
 CONSTRUCTION AND USE OF THE DSP COMPUTER
 ==

1. Construction Overview

 Although Digital Signal Processing was introduced to
simplify the hardware required and thus reduce costs, some
hardware still has to be built. Assembling a computer type
circuit is certainly not as demanding as building a
radio-frequency analog circuit, especially not from ready-made
building blocks, like microprocessors, peripherals or memories.
 However, these ready-made building blocks do not always
conform to the published specifications, especially when there
are more manufacturers offering apparently interchangeable
products. Even with products from the same manufacturer there
are sometimes sudden changes due to a new manufacturing process
or simply a spread of important parameters well in excess of
what guaranteed on the data sheets. During circuit design,
every effort was made to try as many different products as
possible and the results are presented as a recommended
"component selection".
 After assembly, the single modules have to be checked for
correct operation. Some modules may require a few alignments
of the on-board trimmers. Then the complete circuit has to be
installed into a suitable case. To help correctly choose the
latter, the mechanical, thermal and electrical constraints will
be discussed.
 Installing the software includes the adjustment of the
various parameters to other analog hardware available, like
transmitter modulation levels or packet-radio delays. Since
source files will be made available, it is also possible to
"personalize" the software adding minor but important features.
 A few hints how to write DSP software are also described
in this article. However, most users will probably find it
necessary to refer to literature describing the microprocessor
and peripherals used. Unfortunately there is not much
literature discussing DSP techniques on an amateur level yet.
Hopefully this will change in the near future.

2. Selection of Components

 Throughout the DSP computer design and development I
tried to use readily available components. Overall cost was
also an important consideration.
 Most computer components are integrated circuits, either
complex function blocks like the microprocessor or memories
or simple TTL and CMOS SSI gates and flip-flops. The latter
belong essentially to three logic families. The bipolar LS
series is used for most functions. The new HC CMOS series is
used where both speed and low power drain in stand-by are

required. The old 40xx CMOS series is used where speed is not
critical. Finally, there are also a few ICs from other logic
families where required.
 Considering the decreasing prices of the HC family it is
already convenient to replace the old LS series with the better
HC series. If all LSs are changed to HCs, no additional pull-up
resistors are required and many 3.3 khom pull-up resistors can
be omitted. In fact, prototypes built with all HC circuits
operated better than those with LS circuits. HC ICs have a
higher noise margin and a stable output impedance compared to
the LS series: both contribute to suppress crosstalk and
ringing of the computer bus. An "all HC" design is recommended
for CPU clock frequencies above 10 MHz.
 The 68010 microprocessor is manufactured by Motorola,
Signetics, Thomson-CSF, Mostek and probably some other
manufacturers. The MC68010 is usually available selected
according to the maximum guaranteed clock frequency of 8 MHz,
10 MHz and 12.5 MHz. I only had available 11 samples from
Motorola with different specified clock frequencies, different
packages and different manufacturing dates and mask-set
identifiers. In practice I noticed a very large spread of the
maximum clock frequency: guaranteed 10 MHz samples reached from
9.5 MHz up to 15 MHz before crashing the software. For
comparison, the 8 MHz sample reached 12.5 MHz and the 12.5 MHz
sample reached 14.5 MHz. Some experimenting may therefore be
very worthwhile! The maximum clock frequency decreases quickly
with increasing chip temperature and also depends on the clock
waveform. The best results were obtained with a Valvo 74HC00 as
the clock oscillator.
 The video board uses special dual-port memories. In the
prototypes I successfully tested both uPD41264 (NEC) and
HM53461 (Hitachi) with identical results. Both 120ns and 150ns
selections worked at 10 MHz CPU clock. The 120ns version is
of course recommended for higher CPU clock frequencies. No
problems were ever noticed using a refresh rate of 20ms (TV
frame) in place of the 4ms required by the manufacturers.
The DAC0800 D/A converter is available from many suppliers.
 The main computer memory uses static CMOS memories. Over
120 NEC uPD43256 120ns chips were tested without problems. The
memory boards also worked with similar memories from other
manufacturers. For processor clock frequencies above 10 MHz
100ns access time memories are recommended.
 The NEC 710xx series peripherals are CMOS versions of the
famous 82xx series of microprocessor peripherals. The uPD71055
parallel I/O port on the processor board can be replaced with a
NMOS 8255, the latter sometimes requires a 330pF capacitor to
delay the CS\ signal for proper operation. The uPD71054
programmable counter can be straightforward replaced with a
8253 chip. On the other hand, the uPD71051 USART can not be
replaced with a NMOS 8251, since the latter is unable to
operate at a 6.144 MHz clock frequency. A 82C51 could work, but
was not tested. The uPD4990 real-time calender/clock chip is
also manufactured by NEC.
 Suitable CODEC chips are manufactured by Mostek: MK5156
and by SGS: M5156. The SGS samples had a lower DC offset in the
A/D section than the Mostek parts. No differences were noted

between the switched capacitor filters manufactured by National
Semiconductor: TP3040 and its Thomson-CSF equivalent: ETC5040.
 The floppy disk controller IC is manufactured by Western
Digital: WD2797 and by Siemens: SAB2797. The serial
communications controller is available from Zilog: Z8530 and
from Sharp: LH8530. The same companies also manufacture a CMOS
Z80CPU (used in the rotator interface) marked Z84C00 and
LH5080 respectively. The ADC0804 is manufactured by National
Semiconductor and equivalents are available from other
manufacturers too. For accurate tracking it is recommended to
use the more accurate versions of the same chip marked ADC0802
or ADC0801.
 The computer modules include many crystal oscillators.
Only two oscillators really need to be accurate and have
trimmers for fine frequency correction: the real-time clock
chip with a 32.768 kHz crystal and the 6144 kHz crystal on the
analog I/O board that defines the sampling rates. Both these
crystals are fundamental mode, 20pF parallel resonance. All the
remaining crystal oscillators at 10 MHz (CPU), 12 MHz (video),
16 MHz (FDC), 6.144 MHz (serial I/O) and 10 MHz (rotator
interface) need not be very accurate. "Computer-grade"
fundamental mode crystals are adequate and no fine adjustment
trimmers are provided.
 Finally, the computer also requires a few larger units:
a keyboard, a floppy drive and a TV monitor. The keyboard
should be a standard ASCII keyboard with a parallel output
including 7 data bits and a negative-going strobe. A keyboard
that only requires a +5V supply is preferred.
 The 3.5" floppy drive should be suitable for double-sided
80 track floppies. The spindle motor speed should be 300rpm.
The raw capacity is 1 Mbyte at 250 kbps MFM. I successfully
tested three different floppy drives: NEC FD1036 and FD1037 and
Matsushita JU363. Older models, like the FD1036 or the JU363,
require two supply voltages, +5V and +12V. New models, like
the FD1037, operate from a single +5V supply but do not provide
a READY signal (move the corresponding jumper on the floppy
controller board). Warning! Although all three floppy drives
use the same 34 pole connector, the connections on one drive
were found to be a "mirror image" of another drive!
 The video board will drive any (European) standard TV
monitor. Only the vertical sync and size may need to be
adjusted to the slightly different frame frequency. Due to the
resolution of the picture displayed, a 12" or larger screen is
recommended. If possible, the monitor should be installed in a
metal case to avoid interferences to sensitive communications
receivers.

3. Installation of Components

 The processor board, the video board, the memory, the
analog I/O and floppy controller are all built on double sided
printed circuit boards, 170mm long and 120mm wide. All modules
have a 64 pole "Euro-card" male right angle connectors with
rows A and C equipped with pins and row B empty. The diameters

of the two mounting holes on each connector have to be slightly
enlarged to accept two 10mm long M3 screws to hold the
connector in place on the printed circuit board.
 The detailed component location plans of the above modules
are shown on Fig.1, Fig.2, Fig.3, Fig.4 and Fig.5 respectively.
"*" symbols denote feed-through holes: no component leads are
installed in this holes, their only purpose is to connect
traces on different sides of the printed circuit board.
 All integrated circuits can be installed on (good quality)
sockets. Use the type with round lathed contacts with gold
plated springs inside. For an eventual troubleshooting it is
only important to have the complex function ICs on sockets,
like the microprocessor or peripherals, it does not help much
to have all the TTLs or 40xx series CMOS on sockets.
 All integrated circuits used in the DSP computer may be
damaged by electrostatic discharges. While CMOS and NMOS
circuits have protection networks to reduce the probability of
damage, new bipolar circuits with small geometries are also
sensitive to static discharges. The best way to prevent these
problems is to understand the damage mechanism. A certain
amount of energy is required to destroy an integrated circuit.
Since the induced electrostatic voltage is limited by effects
like corona discharge, the only variable left is the capacity
of the capacitor holding the charge. For example, simply
touching a pin of an unconnected IC can never be harmful: the
capacity of the relatively small IC package towards its
surroundings is very small. On the other hand, if the IC is
installed in a circuit and the circuit is grounded or connected
to another high capacity object, the energy may be sufficient
to destroy a bipolar TTL IC. Therefore, I do not recommend
using conductive ground planes for working surfaces or
grounding wrist straps since in the case of a mistake, the
latter may be dangerous for the operator too. Simply avoiding
"dangerous" situations, like a high capacity to high capacity
discharge through a sensitive component like the one described
above, I never had even a single failure of a MOS IC to be
attributed to a static discharge!
 IC sockets are also used as jumper plugs (to select the
interrupts) and as connectors. A very simple but reliable
connector joint can be built from two identical IC sockets. One
socket is soldered into the printed circuit board and is used
as a female connector. The other socket is used as a male
connector with wires soldered in the holes for the IC pins.
 The power supply is built on a single-sided printed
circuit board 120mm long and 100mm wide. Since it includes a
few heavier components, like the NiCd batteries or the ferrite
pot core and requires a few connections, only 4 wires, with the
computer bus, the unit is not equipped with an "Euro-card"
connector. It is to be installed separately using four M3
screws in the corners.
 All electrolytic capacitors are vertical types. The NiCd
cells are installed horizontally The connections are made
soldering two pieces of 1mm thick copper wire to each battery
cell terminals which also keep the cell in place. The BDX34
power Darlington transistor is installed on a small heat sink
with a M3 screw.

 The (approximately) 100uH 5A chokes include 25 turns of
1mm thick enameled copper wire wound on a 5mm diameter ferrite
screw. The storage coil L is wound on a 30mm diameter pot core
with an approximately 0.5mm thick air gap. It has 10 turns of
four times 0.5mm enameled copper wire.
 The bus board only includes female "Euro-card" connectors
and supply bypass capacitors. The location of the latter is
shown on Fig.7. The board itself is made of 2.5mm thick
laminate for mechanical strength. The connector pins should be
4mm long for easy soldering. The connectors are held in place
with two 8mm long M3 screws. It is very important to install
these screws first, before soldering the pins, otherwise the
sensitive springs inside the female connectors will be damaged
resulting in intermittent contacts!
 The rotator interface board, shown on Fig.8, is a
stand-alone board but otherwise the installation of the
components is identical to other computer modules. If all the
integrated circuits used are CMOS versions as recommended, then
the power drain is so low that the 7805 regulator does not
require a heat sink.

4. Module Checkout and Alignment

 It is not recommended to assemble the complete computer
with all the modules and apply the supply voltage. With such a
complex circuit chances that everything will work immediately
are very small. Further, a malfunction in one of the modules,
especially the power supply, could damage many expensive
components on other modules. Finally, troubleshooting may be
impossible in these conditions.
 After assembling the single modules, an accurate visual
inspection of the printed circuit boards is highly recommended.
My personal experience is that most mistakes are made during
soldering: either missed connections or accidental shorts
between adjacent lines. After this the modules should be
checked in a reasonable order: using already tested modules to
check another module.
 The first module to be tested is obviously the power
supply. Its input should be connected to an adjustable voltage
DC source to test both the switching regulator and the reset
circuit. Due to manufacturing tolerances of Zener diodes it may
be necessary to change the nominally 820 ohm resistor (*) in
series with the Zener diode to obtain the correct output
voltage of 5V (under load!).
 The reset circuit should have the required hysteresis and
delay. The voltage across the NiCd battery should also be
verified. Finally, the 1N5822 Schottky diode used to charge the
battery should be verified for leakage current (main power off)
It should not be more than 20uA measuring the voltage fall
across the 120ohm resistor. Do not unsolder the diode just for
measuring purposes since the leakage current is very
temperature dependent.
 Next, the bus mother board has to be checked. The latter
has a very large number of close solder joints. It is

recommended to test it with an ohmmeter for shorts before
connecting the four wires to the power supply.
 Whenever inserting modules in the bus board, keep in mind
that some supply voltages are always present, even with the
main power off, due to the NiCd battery. The best way to insert
a module with an "Euro-card" connector is to make the ground
connection first. Since the latter is on the opposite side of
the supply contacts, it is sufficient to remember to always
plug-in the modules under such an angle that the ground
connection is made first. Before plugging-in a module, a static
discharge, touching both circuit grounds at the same time with
naked hands is recommended too.
 The video board can now be plugged in the bus. Connect a
TV monitor to the video output. Due to the random content of
the dynamic RAMs after power-up, the video board should produce
a rectangle containing a random pattern and surrounded by a
black border on the TV screen. Adjust the horizontal position
trimmer to center the picture. Also adjust the various commands
on the TV monitor to obtain a reasonable quality TV picture.
Also check the operation of the on-board flyback inverter, which
should produce a negative supply voltage of about -4V.
 Once the video board is working the processor board can be
added. Of course turn the power off before plugging in or out
any module! Do not connect a keyboard to the processor board,
nor the partial/total reset switch. The latter connection
should be left open to enable a total reset. If everything is
working properly, the random pattern on the TV monitor should
disappear about one second after power-up (reset delay) and be
replaced by a help message text covering almost all the screen.
A blinking cursor should also appear.
 If the random pattern remains unchanged there is a problem
on the processor board or on the video board that has to be
repaired before you can proceed with other modules. In this
case it is useful to check the behavior of the HALT\ line on
the bus: a double bus error makes it go low. Please remember
that for a correct start-up the software required is contained
in the 27128 (or 27C256) EPROM. The operation can not be
checked without a programmed EPROM!
 When the processor board is working correctly the keyboard
can be connected. Under the operating system command mode, all
the printable characters should be printed on the screen up to
the maximum allowed line length. Any control character is
interpreted as a carriage return. Any letters will only be
printed in upper case in the command mode. The code required
for the delete function is 7FH. After this, try to issue some
simple commands as described in the operating system manual.
Avoid commands that use peripherals that are not installed yet,
like the floppy disk or the RS-232 port.
 The operation of the real-time calender/clock can be
checked using the corresponding operating system command "U".
It is a little more difficult to adjust the 32.768 kHz crystal
to the correct frequency, since the oscillator circuit is a
very high impedance circuit. The simplest way is to leave the
trimmer in the middle position and correct the adjustment if
a clock drift is detected a few days later.
 The processor board carries a nominally 10 MHz crystal

oscillator and the MC68010 should also be a 10 MHz version.
However, it is very useful to test your processor for its
maximum speed. This can simply be done by replacing the crystal
in the clock oscillator. Of course, the computer can not be
operated reliably at the maximum clock frequency. The latter
will be further reduced when loading the bus with additional
modules. A safety margin of about 2 MHz below the maximum
frequency was found appropriate in most occasions. All the
software was designed for a minimum clock frequency of 9 MHz,
but a higher clock frequency is very desirable.
 The remaining modules are easy to test once the processor
is operating, since the latter can also be used as a powerful
troubleshooting tool. The easiest to test are the memory
modules. When installing the memory modules do not forget to
program each of them for a different address range. Further,
all the modules should form a contiguous memory area to be
used efficiently by the operating system software.
 To test a memory module, try the "W" instruction first to
write to or read from a few memory locations. Most defects are
discovered in this way. However, it is a little impractical to
test 1 Mbyte of memory in this way. The final check can be done
later, for instance by loading a few files from a floppy disk.
 The analog I/O board first requires a few checks on its
own. The on-board voltage inverter should supply a negative
voltage of -5V. The crystal oscillator has to be adjusted
exactly to 6.144 MHz with a frequency counter only connected
after a buffer gate. If it is not possible to adjust the
frequency with the given tuning range of the trimmer capacitor,
then the fixed capacitor in parallel with the trimmer should be
replaced.
 The operating system software does only include routines
to use the RS-232 port on the same module. The analog I/O
could be tested issuing a number of "W" commands to initialize
the appropriate registers, but it is usually easier to load a
DSP program that uses the analog I/O port. The A/D converter
offset can be adjusted when running a program that is sensitive
to A/D offset errors, like the APT picture receiving program.
 Before installing the floppy disk controller module, the
floppy disk drive manual has to be consulted. All the
connections between the drive and the controller should be
verified and the jumpers adjusted for the drive used.
 The floppy controller itself requires three adjustments:
VCO frequency, read pulse width and write pre-compensation. All
three adjustments are to be performed by connecting the TEST\
input (pin 22) to GND only AFTER reset has been applied to the
computer. Grounding TEST\ while reset is active will program
the 2797 FDC for a different mode of operation! The divided
VCO frequency, 250 kHz, can be measured on pin 16 (DIRC) with
a frequency counter and adjusted with the VCO's capacitive
trimmer. Then the RPW duty cycle can be observed with an
oscilloscope on pin 29 (TG43) and has to be set to 12.5% using
the 47kohm trimmer.
 The write pre-compensation pulse width can be observed on
pin 31 (WD). Since however the floppy drive manuals seldom
specify this value an experimental adjustment is required.
Leave the 10kohm trimmer in center position and disconnect the

TEST\ line from GND. Insert a new, empty floppy disk and try to
format it as described in the operating system manual. An
improper write pre-compensation will result in formatting errors
appearing on the innermost tracks, usually on tracks 75 to 79.
In the case of errors, try another setting of the 10kohm
trimmer and retry formatting tracks 75 to 79 until all the
tracks format properly.
 The rotator interface only carries a single trimmer.
However, there are two trimmers in the rotator control unit and
eight variables in the tracking program to be adjusted. All
these adjustments are to be made with the actual rotator with
the antennas installed. To understand all these adjustments an
insight in the operation of the automatic tracking program is
required.

5. Housing Constraints

 After assembly, the competed computer has to be installed
in a suitable case. There are however mechanical, thermal and
electrical constraints. The main mechanical requirement is
to build a suitable guide structure to keep the modules in
their respective connectors. Even when the computer is being
transported to another location it is very inconvenient if all
the memory content is lost due to an intermittent contact on
the bus.
 The electrical performances of all integrated circuits
used in the computer degrade quickly with increasing ambient
temperature. In particular, the operating speeds of all logic
families decrease with temperature. It is therefore highly
desirable to keep the ambient temperature and the temperatures
of the single chips as low as practical.
 It is very difficult to install heat sinks on all
integrated circuits. The printed circuit boards can however be
installed in a vertical position to allow an efficient air
flow. Finally, the power supply unit (another heat source)
should not be installed close to the processor board (the most
sensitive to heat).
 A 16 bit microcomputer has at least twice the number of
connections compared to an 8 bit microcomputer. A 16 bit
computer also operates at a speed an order of magnitude faster
than an 8 bit machine. The most immediate result is that a
16 bit microcomputer radiates 20 to 30dB stronger radio
interferences when compared to an 8 bit microcomputer. Since a
DSP computer is designed to work with communications equipment
including sensitive receivers, a very accurate shielding is
absolutely necessary.
 The computer has to be installed in a metal (aluminum)
box. It is important that the box is completely closed and that
the covers make good electrical contacts with the box frame on
all edges. The latter should therefore not be painted or
anodized. All the connections should be bypassed and/or should
use shielded cables. Bypass capacitors should be installed
immediately on the connectors and ground conductors should be
grounded on the connectors too, otherwise they will work as

coupling loops for the disturbs. The keyboard connections, the
video output, the RS-232 port and the high-speed serial port
can not have bypass capacitors and the use of shielded cables
is mandatory.
 ASCII keyboards now use a single chip microcomputer to
scan the keys and generate the codes. The latter could also
cause some radio frequency interference since keyboards are
usually packaged in non-conductive plastic cases, although
the switching frequency is low and the disturb level is low
too. A metal case keyboard is the best solution. A valid
alternative is an old, surplus keyboard, with a dumb diode
matrix logic, which can not generate RFI either.
 A more important source of interferences is the TV
monitor, if packaged in a plastic case. It will generally only
cause interference when fed with a computer generated video
signal. The latter is amplified to about 20 to 30 Vpp to
drive the CRT. A very efficient but cheap solution to limit
interferences at VHF and higher frequencies is to filter the
video signal before sending it to the TV monitor. Since the
video signal does not contain useful information above 10 MHz,
the spectrum above 10 MHz can simply be filtered away with a
low-pass filter greatly reducing the interference without
degrading the picture at all.

6. Software Installation

 Software installation is relatively simple compared to
commercial computers. The operating system is completely
contained in an EPROM. The actual version V7.1 is about
15 kbytes long and was written directly in MC68010 machine
code. The EPROM can be a 27128 or a 27C256 programmed to fit in
the same socket without modifications, since the 27128 and in
particular the 27C128 are more expensive and not always
available. For future upgrades the CPU printed circuit board
already carries an additional address line to three solder pads
close to the EPROM socket. The circuit can be thus modified to
use all the 32 kbytes of a 27C256. Note however that the 27C256
EPROMs supplied with the V7.1 software are programmed to fit
into an unmodified circuit (A14 always high) and will not work
if this modification is made.
 After power-up the action taken by the computer depends on
the position of the partial/total reset switch, which should be
installed on the front panel. In the case of a first power-up
(or after a catastrophic software crash...) the computer
requires a total reset. During a total reset, the whole content
of the EPROM is copied into the nonvolatile system RAM. All
system variables are thus reset to their default values. The
operating system software is always executed in the RAM, since
the latter has a much lower access time than the EPROM and does
not introduce any wait states.
 The partial/total reset switch is then moved to the
partial reset position for normal operation. In this case the
computer assumes the RAM already contains valid software and
only a small part of the content of the EPROM is copied into

the corresponding part of the RAM. Most of the software in the
RAM is left unchanged including the operating system
parameters.
 After a total reset some operating system parameters
should be set. The most important is to tell the computer the
location and amount of RAM available using the operating system
command "N". This and other operating system commands are
described in detail in the "Operating System Manual". The
latter can not be published since it is too long but will be
made available separately. A short description of all available
commands can be obtained by issuing the "H" (Help) command. The
latter is also programmed as the default autostart command.
 Application programs are supplied on floppy disks. Both
source program files and compiled executable files are usually
made available. Application programs have extensive menus
and/or help messages activated only when a wrong command is
issued. To use a program it is only necessary to load the
compiled (.EXE) file from the floppy disk into the RAM (command
"L"). A program can then be executed using the command "R".
 DSP programs contain many variables - parameters to be set
by the user. In the supplied application programs these
variables have been set according to my own analog hardware.
Some programs also include an option in the main menu to reset
all variables to their default values.
 Source program files are well commented to provide a
better understanding of the operation and should enable users
to modify the programs. Source program files are ASCII files
that can be handled by any text editor program, including the
text editor built in the operating system. The high level
language syntax is explained in the "Operating System Manual".
 Source files usually only contain symbolic variable names.
After compiling a program, the compiler will also assign memory
space to store the actual variable values inside the compiled
executable file. The initial content of the variables is thus
completely random. However, if an executable file with the same
name already existed in the RAM directory, the compiler will
try to copy all variable values into the new executable file.
This is very useful since for example, after a small
modification of the satellite tracking program it is not
necessary to type in the Keplerian elements for 40 satellites
again (only a few hours of typing...).
 Finally, if an application program tries to use an
inexistent peripheral or runs out of memory, the operating
system will stop the execution in an orderly way indicating the
bus error address, type of access and program counter value.

7. Writing DSP Software

 DSP programming usually includes both programming in
machine code for the DSP algorithm itself and programming in a
high-level language to support and use the DSP routines. To
recall the DSP routines periodically interrupts have to be
used. The following discussion describes how this can be done
efficiently on the DSP computer described.

 When a MC68010 microprocessor receives an interrupt
request with a priority level higher than the current processor
priority (described with the corresponding bits in the status
register) a call to the interrupt handling routine is made.
Start addresses of interrupt handling routines are stored
together with other exception vectors in the exception vector
table in the computer memory. The exception vector table is
located in the system RAM during normal program execution
(except at power-up). Its start address is stored in the Vector
Base Register (VBR).
 Hardwired logic on the processor board makes the MC68010
to operate in the auto-vector mode: each interrupt level is
assigned a single vector in the exception vector table. After
reset, all interrupt vectors are pointing to an error handling
routine (except interrupt 7 - the operator keyboard) and the
processor priority is set to 7. To use an interrupt, the
following has to be made exactly in the order given:
1) Replace the current interrupt vector with a vector pointing
 to the interrupt handling routine.
2) Initialize the peripheral that will request the interrupt.
3) Adjust the processor priority level if required.
After the interrupt is no longer being used, the following has
to be made to restore the original conditions:
1) Disable the peripheral requesting the interrupt.
2) Return the default interrupt vector (pointing to the error
 handling routine).
3) Return the processor priority level if modified.
The address of the memory location containing the interrupt
vector is computed by adding the corresponding offset to the
start address stored in the VBR. The offset is 64H for INT1
level auto-vector, 68H for INT2 ... up to 7CH for INT7.
 From the user point of view it is very convenient to build
interrupt routines into high-level language programs that can
be handled or compiled as any other program. The compiler
produces relocatable .EXE program files: the operating system
considers that an .EXE file can be executed on any memory
address. However, the exception vector table contains absolute
addresses. The program should therefore include a routine to
compute the interrupt routine address dynamically each time
the program is executed on a new memory location.
 In the case of the MC68010 it is convenient to use the
Load Effective Address instruction, in particular LEA d(PC),An
to find the actual program counter. The address-finding routine
is usually located just in front of the interrupt routine so
that the unknown start address can be computed easily.
 Interrupt routines are usually DSP routines written almost
entirely in machine code. However, high-level language
expressions are necessary to interface to the rest of the
program. Whenever a call to an interrupt routine is made, it
is necessary to save the content of the microprocessor internal
registers on the stack and restore it before exiting from the
routine. Considering the many MC68010 internal register this
operation may be very time consuming. Since most DSP machine
code routines only need a few registers, only the latter are
saved and restored before exit to save CPU time. High-level
language expressions however use all MC68010 registers!

 Programs designed for use in an interrupt driven
multitasking environment require some additional features.
Since different interrupt routines may belong to different main
programs and the interrupt nesting is arbitrary, the content
of all microprocessor registers is completely unknown when
entering an interrupt routine. If high-level language
expressions are used in interrupt routines, the values of
registers containing base addresses, usually A4 and A5, have to
restored for correct operation.

8. Conclusion

 As already mentioned in the first, theoretical part of the
article, the DSP computer described is only a very successful
prototype able to solve many practical problems. We will
probably not have to wait long to see much more powerful
computers built with new devices designed especially for DSP.
We probably still have to invent most applications of DSP in
amateur radio too.
 It is very difficult to describe a complex electronic
circuit in the limited space of a few magazine article without
omitting important details. I would recommend to all users to
order a copy of the "Operating System Manual" (about 15 sheets
A4) which includes a detailed description of all operating
system commands, text editor and high-level language compiler.
I preferred not to publish the manual in the magazine since it
would be very boring to all readers not directly interested in
this DSP computer.
 Those interested in writing DSP software will certainly
need more information on the hardware used, especially the
MC68010 microprocessor. During the development of this
computer I used the following publications from Motorola:
1) 16-bit Microprocessors Data Manual, 1983.
2) M68000 16/32-bit Microprocessor Programmer's Reference
 Manual, 1984.
Data on memories and peripheral devices were obtained from
several data-books and data-sheets from NEC, Western Digital,
Zilog, National Semiconductor, Mostek, RCA, Fairchild and
Matsushita. All the above information on the components used
includes more than 1000 pages A4.
 Both design and construction articles mainly discussed the
hardware and the operating system software. The application
software was only briefly mentioned in the theoretical
introduction article. A detailed description of the application
software would require at least another article. However, all
the application software includes extensive menus and help
messages and maybe an additional description is not necessary
at all. Software is also changing quickly and such a
description would become soon obsolete.
 Besides the five application programs mentioned in the
theoretical article, the hardware described offers several
other possibilities. Some of these are now only planned. Others
are tested, but the final version is not implemented yet.
Finally, some are already fully implemented. The most

interesting programs include:
1) AO-13 400bps PSK telemetry reception (implemented)
2) Meteosat WEFAX reception (tested)
3) SSTV RX/TX (planned)
4) Audio recorder with variable playback speed (tested)
5) FFT audio spectrum analyzer (planned)
6) AX.25 communication modems up to 2400bps (planned)
7) Advanced protocols with error correction coding (planned)
8) Ranging for satellite orbit determination (planned)
 Many other programs and some hardware (an EPROM programmer
module) were developed just as tools to work on the hardware
and on the operating system. I decided not to describe them
since they are probably not interesting for the majority of
readers.
 At the end I hope this series of articles will stimulate
more amateurs to experiment in the DSP field. Maybe the
capabilities of the DSP computer shown are not comparable to
what are the leading semiconductor manufacturers advertising on
their data-sheets, but do not forget that there is a long way
from the data-sheet to a working DSP project. In any case, the
described DSP computer was found much more versatile than the
originally planned successor to the APT scan-converter and in
some cases it performed even better than dedicated DSP
computers.

**

 *** YT3MV - DSP OPERATING SYSTEM MANUAL - V7.3 ***
 ==

1. INTRODUCTION

 The YT3MV DSP operating system is intended to be used
with the corresponding DSP computer including a MC68010 16 bit
microprocessor, usually 1Mbyte of static nonvolatile CMOS RAM
and peripheral devices including parallel and serial I/O ports,
analog I/O ports (A/D and D/A converters), a floppy disk
controller/driver and a real time clock.
 Since almost all of the available RAM is nonvolatile, the
operation of the computer is no longer based on mechanical
storage devices, like floppy or hard disks or tape drives.
The operating system uses the nonvolatile RAM at the same time
as a long term volume storage device (hard disk) and as the CPU
working memory. Floppy disks are only used as a memory backup
in the case of a system crash and/or to ease the transfer of
programs and data.
 The nonvolatile RAM is organized as a directory of files.
All the RAM files are stored in contiguous memory locations:
program files can be executed in the same memory locations
where are stored. This is a much simpler and better solution
than the popular "RAM disks", which retain the same data
organization as floppy disks with files split in a number of
equal size blocks, requiring an additional RAM area and
precious CPU time to assemble program files into executable
programs.
 Most operating system commands only work with RAM files.
A limited number of commands is provided to support the
operation with floppy disks, since the latter are not used
frequently. Operations with files on floppy disks are not just
more slow and complex, they are also very time consuming for
the CPU. In a computer devoted to Digital Signal Processing,
the CPU is loaded with the very time demanding DSP routines
almost to the theoretical speed limit of its processing power.
Operation with disks or other mechanical storage devices at the
same time would severely degrade the DSP computer performance.
 Routines to use the serial RS-232 port and the real time
clock chip are also provided. Files can be received and/or
transmitted through the RS-232 port using different speeds
and data formats.
 The operating system includes a screen text editor program
and a high-level language compiler. The screen text editor can
be used to edit ASCII text files and in particular to prepare
source programs for the high-level language compiler. The
compiler program generates a machine code program for the
MC68010 microprocessor from the source ASCII file. The
high-level language allows single and indexed variables,
floating-point arithmetics including transcendent functions,
input/output routines and a simple and efficient way to insert
and communicate with machine code routines. The latter is
particularly important for DSP since the basic DSP routines

have to be written directly in machine code since they must be
very fast. On the other hand, the various support routines
require complex mathematical operations that are easier to
perform in high-level language.

2. OPERATING SYSTEM COMMANDS

 All the operating system commands include a single letter
command that may be followed by one or more filenames or
parameters. Typing errors can be corrected using the <DELETE>
key (code 7FH form keyboard) and the command is executed
after depressing the <CR> key (code 0DH from the keyboard).
A filename is made of up to 12 characters followed by an up to
three characters long extension. When more than one filename
is required by a certain command, the required filenames are
separated using space characters. Complete filenames have to be
typed: wild-cards (*) are not allowed. Some commands are however
able to find the right extension on their own.
 Some commands do not always require that one or more
filenames are supplied, filenames typed with the previous
commands are used in the case no filename is specified.
Of course, dangerous commands like kill (K) or format (F)
always require the exact number of filenames or parameters to
follow.
 The operating system includes two directories of files:
a RAM file directory (command M) and a floppy disk file
directory (command D). The RAM file directory may include
more than one file with the same name and all the commands act
on the first file with the specified name encountered in the
directory. To access the other files rename (command J) or kill
(command K) the first file carrying the same name. Two or more
files with the same name are not allowed on a floppy disk.
Files can not be killed or renamed on a floppy disk, the only
way is to erase the complete disk by formatting it.
 The operating system provides three different error
messages:
? means an operator error, usually an inexistent or duplicated
 file name.
* means a floppy disk error. In the case of a disk read
 operation, the file loaded from the disk into the RAM should
 be discarded (killed) since it contains errors. In the case
 of a disk write operation, the disk should be formatted.
 A program crash, either due to a programming error or a
hardware breakdown usually causes a bus error or an address
error (or another unused exception vector). A call to the
monitor program is generated and an error message is printed
in the form:
PC:<prg_counter> F:<stack_format> S:<SSW> A:<access_address>
The last two items are included only in the case of a long
stack format (bus error and address error).
 The execution of a program or operating system command can
be interrupted or aborted by pressing <CTRL-C> (code 03H from
the keyboard, which calls the operating system immediately.
The computer can now be commanded using the operating system

commands: use command A to reset the computer, command Q to
resume the execution or other commands to diagnose the problem.

 Implemented V7.3 commands include:

A Abort - Software RESET Command
 Resets the computer in the same way as the reset
 pushbutton or at power-up. The actual action depends on
 the position of the partial/total reset switch.

B Enter Autostart Command
 After the ":" symbol, the autostart command can be typed
 in as any other operating system command.
 The autostart command is executed immediately after each
 computer reset, its syntax being identical to the
 operating system commands originated from the keyboard.
 Any valid operating system command can be executed after
 a partial computer reset as the autostart command.
 After a total computer reset, the autostart command is
 first set to its default (the H (help) command) and
 then executed.

C <source> <source> <source> <destination> Copy RAM Files
 Copies the specified source files into a destination file.
 Up to 7 (source) files can be pasted together and the
 resulting file receives the last specified filename
 (destination).

D Floppy Disk File Directory
 Prints the floppy disk file directory in the following
 format:
 <filename> up to 12 characters
 <extension> up to 3 characters
 <start_track> between 0 and 79, two decimal digits
 <start_side> 0 or 1, one digit
 <start_sector> between 1 and 5, one decimal digit
 <file_length> up to 5 hexadecimal digits

E <filename> Screen Text Editor - 63 Column Version
 Calls the screen text editor program, which has a number
 of its own commands described later. If no file with the
 specified name can be found in the memory file directory,
 a new, empty file is created. If there already exists a
 file in the memory file directory with the specified name,
 a copy is generated and the original file is renamed:
 its extension is modified to .BAK.
 If the specified filename carries the extension .EXE, the
 editor automatically looks for a file with the same name
 but with the extension .SRC.
 All the editor commands are control characters. The exit
 command is <FF> or <CTRL-L> (code 0CH from the keyboard).
 The E command automatically sets the screen display
 routine in the 64 column mode, thus text with line lengths
 up to 63 characters can be edited. See also the Y command
 for editing text with lines up to 84 characters long.

F <start-track> <stop-track> Format / Verify Floppy Disk
 Formats the floppy disk from the specified start-track
 up to and including the specified end-track. One track
 includes 5 sectors on each side of the floppy disk. Each
 sector is 1024 bytes long. A fully formatted 80 track
 floppy disk thus includes 800 sectors or 800 kbytes.
 The usual formatting command is: F 0 79
 The formatting routine prints out the number of the track
 actually being formatted. Defective tracks, if any, are
 marked with the symbol "*". Floppy disks containing
 defective tracks should be discarded immediately, since
 the operating system does not allow bad sectors. In the
 latter case it is recommended to try the formatting once
 again, reinserting the floppy in the drive. Most errors
 with 3.5" floppy disks were found to be caused by an
 incorrect mechanical insertion rather than a defective
 floppy disk.
 If the floppy disk is write protected, the command will
 only perform a verification of the formatting.

G <filename> Compile .SRC >>--->> .EXE / .OLD
 Compiles a source file in high-level language (extension
 .SRC) into an executable machine code program file
 (extension .EXE). Both the .SRC and .EXE files share
 the same name (first 12 characters) and the command
 looks automatically for the correct extensions.
 If a file with the specified name and extension .EXE
 already exists, a copy is made first and the original is
 renamed to .OLD. The source file is then compiled in the
 same memory locations that carried the copy of the
 original .EXE file. In this way the numerical values
 of the variables in the old .EXE file are transferred to
 the new .EXE file if the latter uses the same variables.
 An error in the source program is indicated with a "?"
 followed by the offset (in hexadecimal) in the .SRC file
 where the error was found.
 WARNING! Do not try to run the resulting .EXE file, if an
 error was found by the compiler!

H HELP
 Prints out a short help file including a list of all
 the operating system commands. The display routine is
 reset to obtain bright characters on a dark background.

I <destination> Input File From RS-232 Port To RAM
 Data received by the serial RS-232 port according to
 the format specified with the command P is assembled
 into a RAM file. The length of the recorded file is
 displayed in hexadecimal format. The recording can be
 stopped by pressing any key on the keyboard.
 The RS-232 signals are used in the following way:
 TXD not used (remains negated).
 RTS remains negated.
 DTR becomes asserted when the command is started and
 is negated when the command is stopped.
 RXD accepts the serial data.

 DSR is used as a carrier detect: must be asserted to
 accept data.
 CTS is ignored.

K <filename> Kill RAM File
 Kills a RAM file. All the files located above the deleted
 file are shifted down in the memory, to create a
 contiguous empty space at the top of the RAM.
 WARNING! The computer should not be reset during the
 execution of the kill command, otherwise the files
 located above the deleted file may be damaged!

L <filename> Load From Floppy Disk To RAM
 Loads the specified file from the floppy disk to the
 RAM. The operating system will answer with a "?" if
 no such file can be found on the floppy disk or if a
 file with the same name already exists in the RAM.
 WARNING! If the operating system answers with a "*"
 (indicating a floppy disk error) or the computer is reset
 during the execution of the command, a corrupted file
 may still appear in the RAM file directory with no
 additional warning messages!

M RAM File Directory
 Prints the RAM file directory in the following format:
 <filename> up to 12 characters
 <extension> up to 3 characters
 <start_address> usually 6 hexadecimal digits
 <file_length> up to 6 hexadecimal digits
 At the end of the file directory, the number of the
 remaining free RAM space bytes is displayed (hexadecimal).

N <start> <length> New Memory Space
 Tells the computer where and how much RAM is available.
 After a total reset, the start address is set to 39600H
 and the length to 6A00H corresponding to a small amount
 of free RAM on the CPU board, which is always present in
 the system, regardless of its configuration.
 The start address and length have to be set according to
 the available memory at system start-up.
 A N command without (or followed by an incorrect number
 of) parameters will only display the current parameters.

O <source> Output File From RAM To RS-232 Port
 Transmit a RAM file through the serial RS-232 port
 according to the format specified with the P command.
 The length of the remaining part of the file to be
 transmitted is displayed in hexadecimal format.
 The RS-232 signals are used in the following way:
 TXD supplies the serial data.
 RTS becomes asserted at the beginning of the transmission
 and is negated after the execution of the command.
 DTR remains negated.
 RXD is not used (is ignored).
 DSR is ignored.
 CTS is used to temporarily stop the transmission when

 negated, the transmission resumes when CTS again becomes
 asserted.

P <speed> <length> <parity> Parameters RS-232 Port
 Sets and displays the parameters of the RS-232 port to be
 used with commands I and O.
 <speed> is in bits per second (bauds) and the value
 entered is rounded to the nearest available bit rate.
 All standard data rates between 50 and 19200 bps can be
 selected.
 <length> is the number of data bits, between 5 and 8.
 <parity> 0 or 2 mean no parity bit, 1 means odd parity
 and 3 means even parity.
 If less than three parameters are supplied, only the
 first parameter(s) will be modified. A P without any
 parameters will just display the current port parameters.
 After a total reset, the parameters of the RS-232 port are
 set to the default values: 9600 bps, 8 bits, no parity.

Q Quit
 Quits the operating system if called from another program
 or using <CTRL-C>. If the operating system was not called
 from another program or using <CTRL-C>, then the command Q
 resets the computer exactly like the command A.

R <filename> Run .EXE
 Runs the specified program file. The extension is set to
 .EXE automatically. To return to the operating system, the
 program file should include a RTS instruction at the end.
 The latter condition is fulfilled automatically if the
 .EXE file is generated by the high-level language compiler
 (command G).
 Program files usually include some memory space to store
 the values of the variables. Since the latter are modified
 during the execution of the program, the whole program
 file will be modified as well! Therefore, two previously
 identical .EXE files will no longer compare if they were
 executed with different data.

S <filename> Save From RAM To Floppy Disk
 Saves the specified file from the RAM to the floppy disk.
 The operating system will answer with a "?" if no such
 file can be found in the RAM or if a file with the same
 name already exists on the floppy disk.
 WARNING! If the operating system answers with a "*"
 (indicating a floppy disk error) or the computer is reset
 during the execution of the command, a corrupted file may
 still appear in the floppy disk file directory with no
 additional warning messages!

T <filename> Type ASCII File
 Types the specified file on the screen as ASCII
 characters. Some control characters are interpreted by the
 display routine and in particular <ESC> sequences may
 modify the display parameters. Use the command H (help) to
 reset the display routine.

U <yymmddhhmmss> Set / Read Real Time Clock
 Sets the real time clock chip to the specified date and
 time. The <yymmddhhmmss> string should contain exactly
 12 figures with no spaces or other characters between the
 numbers. If no date and time is specified, the command U
 will just print out the actual date and time supplied
 from the real time clock chip.

V <source> <source> Verify - Compare Two RAM Files
 Compares two RAM files. First, the difference in length
 in bytes (hexadecimal) is printed out. After that all the
 differing bytes are printed out in the following way:
 <offset>:<file1byte>^<file2byte>
 up to the end of the shorter file, the excess bytes at the
 end of the longer file are ignored.

W <address> <data> Write / Read Memory Location
 Writes the given 16 bit data word to the specified memory
 location. If no data is supplied it just performs a read
 from the specified address. This command provides a direct
 access to the hardware and is used essentially to debug
 the hardware and/or for system initialization (start-up).
 WARNING! The W command may corrupt files or crash the
 operating system if used incorrectly!

X <filename> Execute .CMD File
 Executes the specified operating system command file. The
 extension is set automatically to .CMD.
 An operating system command file is an ASCII file that
 includes one or more operating system commands identical
 to the commands typed directly to the operating system.
 Each command is executed after a <CR> encountered in the
 command file. An operating system command file can be
 assembled using the screen text editor (commands E or Y)
 like any other ASCII file.
 WARNING! It is not recommended to use commands B, K, N
 and Q in command files!

Y <filename> Screen Text Editor - 84 Column Version
 Calls the screen text editor program in the same way as
 command E. A more detailed description of the editor
 commands follows later. The Y commands sets the screen
 display routine to 85 columns allowing the editing of
 ASCII files with up to 84 characters per line, including
 the 80 character per line computer standard. Otherwise,
 the Y editor works exactly as the E editor.

3. SYSTEM START-UP

 When powering-up the computer for the first time, a total
computer reset has to be performed and some operating system
parameters have to be adjusted. The same procedure is also
recommended after a program crash that might have damaged the

content of some memory locations before the computer stopped.
 The hardware can be reset in four different ways:

- Applying the supply voltage.
- Pressing the RESET pushbutton.
- Using the operating system command A (Abort).
- A software jump or call to the location 000100H.

The action taken by the computer after a reset is applied is
identical in all four cases, it only depends on the position
of the TOTAL/PARTIAL RESET switch. If the latter is open, a
total computer reset will be performed. If it is closed, only
a partial computer reset will be performed.
 During a total computer reset, the complete operating
system software is copied from the EPROM to the nonvolatile
system RAM, all the operating system parameters are set to
their default values, all the peripheral devices are reset, the
modified character generator table is generated. All the memory
which is not used by the operating system is however left
unchanged!
 After a total computer reset the HELP message should
appear on the video screen, since the default autostart command
is command H. The TOTAL/PARTIAL RESET switch has to be closed
(enabling a partial reset) and the available RAM space has to
be specified using the command N. If there is one megabyte of
RAM available starting at address 200000H, the command is:

N 200000 100000

 To clear the content of the RAM, if any RAM files are
displayed by the command M, it is sufficient to clear the first
RAM location using the command W, in the above case:

W 200000 0

 Further initialization commands may include commands B,
P and U to set respectively the autostart command, the serial
port parameters and the real time clock but they are not
essential like the N command.
 When the nonvolatile RAM contains useful data, like the
operating system software with updated parameters and
application program and data files, it is reasonable to perform
a partial computer reset at power-up. During a partial computer
reset, only the exception vector table is copied from the EPROM
to the nonvolatile RAM, all the peripheral devices are reset,
the video screen is cleared and the autostart command is
executed.
 After a partial reset, the computer is immediately ready
for use, including the application program and data files in
the nonvolatile RAM which operates almost like a "hard-disk"!

4. HARDWARE CONFIGURATION

 The hardware required to run the DSP operating system

includes:
(A) CPU board with the MC68010 microprocessor, operating system
 EPROM, 64 kbytes of nonvolatile CMOS RAM, keyboard
 interface and real time clock.
(B) Video board with 128 kbytes of dual port video RAM.
(C) One or more 256 kbytes CMOS memory boards.
(D) Analog I/O and RS-232 board.
(E) Serial I/O and floppy interface board, including a 3.5"
 floppy drive.
(F) Bus board and power supply.
 The operating system can run with just the memory on the
CPU board (A), the latter is however far too small to load most
application programs and additional memory boards (C) have to
be added. The analog I/O and RS-232 board (D) is only used by
the operating system with instructions I, O and P, however all
the DSP application programs need the analog I/O. Similarly,
the serial I/O and floppy interface board is only required with
instructions D, F, L and S.
 The CPU board (A) includes a timeout logic that generates
a bus error if no memory or peripheral device terminates a bus
cycle within 192 CPU clock cycles. Missing or defective
peripheral devices can thus be detected, as well as inexistent
memory locations.
 The MC68010 CPU allows a 16 Mbyte address range. The first
megabyte is reserved for the operating system memory, video
memory and peripheral devices and the remaining 15 megabytes
can be used for general purpose memory. The first (system)
megabyte is allocated as follows:

000000H to EPROM containing the operating system software
007FFFH

010001H 71055 port A - parallel keyboard input
010003H 71055 port B - spare parallel output
010005H 71055 port C - keyboard strobe & RTC chip control
010007H 71055 command register

020001H Analog I/O 71051 data register
020003H Analog I/O 71051 control register

024001H 71054 CTR0 A/D sampling rate
024003H 71054 CTR1 RS-232 baud rate
024005H 71054 CTR2 D/A sampling rate
024007H 71054 control register

028001H RS-232 71051 data register
028003H RS-232 71051 control register

030000H to 64 kbytes nonvolatile system RAM
03FFFFH

040000H to 128 kbytes dual port video RAM
05FFFFH

080001H 8530 B command
080003H 8530 B data

080005H 8530 A command
080007H 8530 A data

084001H LS273 latch

088001H 2797 control register
088003H 2797 track register
088005H 2797 sector register
088007H 2797 data register

 Care should be taken if other peripheral devices are to be
added, since the above addresses are not fully decoded. In
addition, the locations immediately below 030000H should be
left unused to allow a safe end in the case of a program crash
making the stack to grow indefinitely: the resulting double bus
error will stop the CPU and prevent it from destroying all the
memory content.
 Function code 7 is decoded and hardwired to VPA\ to
generate interrupt auto-vectors, the remaining function codes
are not further decoded. The interrupts are assigned as
follows:

INT1 RTC 4990 TP

INT2 RS-232 71051 TX ready

INT3 RS-232 71051 RX ready (FDC 2797 INT)

INT4 FDC 2797 DRQ

INT5 D/A 71051 TX ready (8530 INT)

INT6 A/D 71051 RX ready

INT7 KBD 71055 INTA

 The computer hardware includes a nonvolatile memory supply
and protection circuit that preserves the content of the
nonvolatile RAM regardless of the power-up and/or power-down
sequences. The protection circuit applies the reset signal to
the microprocessor and inhibits the access to the nonvolatile
RAM chips and real time clock chip immediately after the supply
voltage at the input of the 5V switching voltage regulator
falls below the minimum value of 6.5V. The reset and inhibit
signals are only removed about one second after the regulator
input voltage has risen above 7V.

5. OS V7.3 ROM ROUTINES

 The DSP operating system V7.3 consists of 16 kbytes
of MC68010 machine code stored in a 27128 or a 27C256 EPROM.
After a total computer reset the operating system software is
copied from the EPROM into the nonvolatile system RAM. The
operating system is always executed in the RAM since the access

time of the RAM is much shorter than that of the EPROM.
 The organization of the software contained in the EPROM is
follows:

000000H to Initial exception vector table
0000FFH

000100H to Start-up routine
0001FFH

000200H to Programs and data to be copied into the system RAM
003FFFH between locations 035800H and 0395FFH

 The nonvolatile system RAM is organized as follows:

030000H to System stack (16 kbytes)
033FFFH

034000H to Modified character generator table
0357FFH

035800H to ASCII character generator table
035AFFH

035B00H to Keyboard and video routines (TRAP0, TRAP1, TRAP2,
035DFFH TRAP5, TRAP10 and INT7)

035E00H to Exception vector table (64 vectors)
035EFFH

035F00H to Operating system program
0395FFH

039600H to Spare RAM area (6A00H bytes free)
03FFFFH

 The following general purpose routines can be accessed
through TRAP instructions:

TRAP0 Prints the content of D0.B as an ASCII character on
 the screen. The screen format is 32 lines of either 64
 or 85 characters each. In the 64 column mode, the
 character font is 7x7 pixels while in the 85 column
 mode it is 5x7 pixels. The routine performs automatic
 line feeds if the number of characters exceeds 64 or
 85 and automatically scrolls the screen up as well.
 The following control characters are implemented:
 <BS> (08H) Moves the cursor one character position
 back.
 <HT> (09H) Moves the cursor one character position
 forward and performs a line feed and/or
 scroll if necessary.
 <LF> (0AH) Moves the cursor one line down
 performs a scroll if necessary.
 <VT> (0BH) Moves the cursor one line up.
 <FF> (0CH) Clears the screen.

 <CR> (0DH) Moves the cursor at the beginning of
 the line.
 <ESC> (1BH) + two characters
 Sets the display parameters with the following
 two characters. The first determines the
 brightness of the background (modulo 32) and
 the second the brightness of the characters
 (also modulo 32). Further, bit 5 of the first
 character selects either 64 column mode (0)
 or 85 column mode (1). The switching between
 display modes can be performed at any time:
 it is not necessary to start a new line or
 clear the screen.
 Any other control characters and codes above 126 (7EH)
 print the cursor symbol.

TRAP1 Supplies in A0 the start address of the screen display
 routine parameter table: cursor position (2 words) &
 display mode (3 words).

TRAP2 Keyboard entry routine. Displays a blinking cursor.
 Any character typed on the keyboard causes an exit and
 is available in D0 but it is NOT printed on the
 screen.

TRAP3 Not used.

TRAP4 Calls the operating system program.

TRAP5 Keyboard interrogation routine. Supplies in D0 the
 last typed character and the number of times any key
 was depressed from the last call of TRAP5.

TRAP6 Prints the content of D0.L in hexadecimal format on
 the screen.

TRAP7 Sets A0 to the beginning of a parameter table
 including the RAM start address, the RAM length and
 the autostart command string.

TRAP8 Executes an operating system command string supplied
 as -(A6).

TRAP9 Searches a file in the RAM with the name supplied as
 (A0)+. The start address of the file is made available
 in A1 and the file length in D0. If the file is not
 found, D0 is set to FFFFFFFFH and A1 points to the
 first free RAM location. If no free RAM is available
 A1 is set to 0.

TRAP10 Supplies in A5 the reference address of the floating-
 -point arithmetics routines.

TRAP11, 12, 13 and 14 Not used.

 The operating system commands work with files. Any file

includes a header of 20 (14H) bytes followed by an even number
of data bytes. The file start address and file length are
always referred to the data bytes WITHOUT the header. The 20
header bytes are assigned as follows:

1 byte File start flag AAH

12 bytes File name

3 bytes File name extension

4 bytes File length

 In the nonvolatile RAM the header of the first file in
the RAM directory starts on the first available RAM location.
The header of the next file starts immediately after the last
data byte of the first file. After the last file there is an
empty space usually filled with zero bytes. There are no empty
spaces between RAM files. After a K (Kill) command, the files
above the killed file are shifted down and the resulting empty
space at the top of the RAM is filled with zeros.
 Files are arranged in a similar way on the floppy disk.
The first file starts on sector 1, side 0 and track 0. When
writing a long file on the floppy disk, the sector number is
incremented first. When the track is full, the floppy drive
heads are switched to the other side. When both sides are full
the heads are moved to the next track. There are no empty
sectors between files, however, each file uses an integer
number of sectors. The last sector may include filler bytes so
that the next file starts exactly on the beginning of the next
available sector.

6. THE SCREEN EDITOR

 The screen editor can be entered with the E or Y command
to edit a text file made of ASCII characters. The original
file, if any, will be renamed .BAK. The two versions of the
screen editor differ only in the maximum number of printable
characters allowed in a line, but are otherwise identical.
The E command will set the screen to 64 columns and will allow
lines up to 63 characters long (to prevent the automatic
line-feed and allow to display the cursor at the end of the
line). The Y command will set the screen to 85 columns and
correspondingly allow 84 characters in a line.
 If the file does not correspond to a text file: if it does
not contain a <carriage-return> + <line-feed> combination at
least every 63 (E) or 84 (Y) printable characters (the maximum
allowed number of characters in a line), then the file will be
truncated just in front of the detected error. Stand-alone
<CR> characters are not allowed and cause a truncation of the
file. The file may however contain other control characters
which are printed as inverse characters (dark characters on a
bright background).
 All the screen editor commands are ASCII control

characters. Valid commands are:

^@ (00H) delete line.

^A (01H) scroll the display window one line up.

^B (02H) scroll the display window one line down.

^C (03H) call the monitor program immediately, exit after
 return with Q.

^D (04H) scroll the display window 8 lines (1/4 page) up.

^E (05H) scroll the display window 8 lines (1/4 page) down.

^F (06H) scroll the display window 1 page (32 lines) up.

^G (07H) scroll the display window 1 page (32 lines) down.

^H or <BS> (08H) cursor one character left (backward).

^I or <HT> (09H) cursor one character right (forward).

^J or <LF> (0AH) cursor one line down.

^K or <VT> (0BH) cursor one line up.

^L or <FF> (0CH) exit from the screen editor.

^M or <CR> (0DH) insert a new line.

^N (0EH) change an upper-case character into lower-case or a
 lower-case character into upper-case.

^O (0FH) allows the insertion of control characters: the next
 printable character typed will be transformed into a
 control character.

 (7FH) delete the character left of the cursor.

All the other ASCII control characters (10H to 1FH) cause an
exit. All printable characters (20H to 7EH) will be simply
inserted in the text.
 Characters that disappear at the right margin are lost
when the cursor is moved to another line or the screen window
is moved along the text.
 The screen text editor updates the file in the nonvolatile
RAM each time the cursor is moved to another line or the
screen window is moved along the text. Therefore, in the case
of an unexpected power failure or another source of a reset of
the computer, only the last line typed may be lost, all the
remaining text is saved in the nonvolatile RAM! When typing a
long text it is therefore not necessary to periodically exit
from the text editor to save the file like on computers that
use dynamic memories and hard discs to avoid losing several
hours of typing due to a power surge!

 When the editor is called for the first time, both the
cursor and the display window will be positioned at the
beginning of the text. However, when the editor is recalled,
it will try to remember the position of the cursor and
display window as they were set last time. The two editors
E and Y have separate buffers for these variables.

7. THE HIGH-LEVEL LANGUAGE COMPILER

 The high-level language compiler accepts an ASCII source
file (extension .SRC) and produces a relocatable machine code
program for the MC68010 microprocessor (same file name, but
with an extension .EXE). If an .EXE file with the same name
already exsists, it will be renamed to .OLD and the numerical
values of the variables will be copied into the new .EXE file.
When an error is found in the source file, the resulting .EXE
file should not be used!
 The compiler only supports floating-point or REAL type
variables and constants. A variable name is made of up to six
characters, the first must be a letter and the following may
also be numbers. Upper and lower case letters are considered
different symbols in variable names.
 A single variable requires six 16 bit words of memory and
includes a 6 character variable name, a 16 bit binary exponent,
a 31 bit mantissa and a sign bit. A 31 bit mantissa allows a
computation accuracy of about 10 decimal digits for the basic
operations (addition, multiplication, division) and about
8 to 9 decimal digits for transcendent functions. A 16 bit
exponent allows numbers to range between about 10^-9863 and
10^+9863. This range is probably enough for any kind of
computations. In the remote case of an overflow, the functions
are programmed to set the result to zero with no warning
messages! Correspondingly, a division by zero produces a zero
output.
 The floating-point format can support ACCURATE operations
with integers, provided that these are small enough. For
addition and subtraction, both operands and result have to be
absolutely smaller than 2^32-1 or 4294976295. For
multiplication and division, at least one of the operands or
result have to be smaller than 2^16-1 or 65535.
 Real number results are always truncated to the nearest
absolutely smaller value that can be represented with the given
real number format. Note that most decimal numbers with
nonzero figures behind the decimal point do not have an exact
representation in the binary format: for example, 2.3 would
be printed as 2.299999 if the result is not additionally
rounded before printout.
 Arrays may have up to 20 dimensions and must be declared.
Each index may range between 0 and 65535. Each array element
requires three 16 bit words of memory and some additional
memory is required to store the array name and information
about its dimensions.
 Arithmetic expressions are executed in the same order as
they are written: all the arithmetic operations including

functions have the same priority. Parentheses are not accepted.
For example, the expression:

MMY/45+12*ERT=FGH

means, that the actual value of the variable MMY is first
divided by 45, then 12 is added to the result of the division,
later the sum is multiplied by the value of the variable ERT
and finally the result of the operation is assigned to the
variable FGH. Variable names are case sensitive: fgh, fgH,
fGh, fGH, Fgh, FgH, FGh and FGH are considered 8 different
and completely independent variables.
 Similarly, the expression:

-TYP(J)*TYP(J)+1$Q=IOP(N)

means that the negative value of the J-th element of the single
dimension array TYP() is multiplied by itself, 1 is added to
the result and the square root (function $Q) of the sum is
assigned to the N-th element of the array IOP(). The compiler
allows the existence of a single variable with the same name
as an array: for example TYP(J) and TYP are completely
independent, the first being an array and the second a single
variable.
 More than one arithmetic expression can be written in a
single program line, separators are simply space characters or
any ASCII control characters, including <CR> and <LF>.
 Functions include both mathematical and other functions.
They may or may not require an operand and may or may not
produce a result. Mathematical functions require one operand
and produce one result. In the case of a math function with
a limited domain, like arcsin, no warning or error messages
are generated if the operand lies outside its domain. Instead,
the result is set to the nearest sensible value. All the
trigonometric functions and their inverses work with angles
expressed in radians. The exponent and logarithm functions
work with the base of the natural logarithm e=2.718....
 All the functions are denoted by the symbol "$" followed
by one letter; both upper and lower case letters are considered
the same here. Valid functions are:

$: Declare an array. For example, $:TGU(12,3,7) means that
 TGU() is a three dimensional array, the first index ranges
 between 0 and 12, the second between 0 and 3 and the third
 between 0 and 7. The dimensions of the array are
 therefore 13*4*8 since 0 is a valid index!
 WARNING! The complier will provide no warning or error
 messages if two arrays or more are declared with the
 same name.

$< Print the following ASCII characters on the screen. The
 string must be terminated with a ">" character, which is
 not printed.

$A ARCTAN mathematic function. Domain unlimited. Range
 between -PI/2 and PI/2.

$B Absolute value function. Domain unlimited. Range all
 positive numbers.

$C Cosine function. Domain unlimited. Range between -1 and
 +1.

$D ARCCOS mathematic function. Domain unlimited. Range
 between 0 and PI. For arguments less than -1 the function
 returns the value PI and for arguments greater than 1 the
 output is 0.

$E Exponent function with the base e. Domain unlimited. Too
 large arguments produce a zero result. Range all positive
 numbers.

$F Fractional part function. Domain unlimited. Range between
 -1 and +1. The function computes the fractional part of
 the absolute value of the argument and retains the sign.

$H ARCSIN mathematical function. Domain unlimited. Range
 between -PI/2 and +PI/2. For arguments less than -1 the
 function returns the value of -PI/2 and for arguments
 greater than +1 the output is PI/2.

$I Integer part function. Domain unlimited. Range all integer
 numbers. The function computes the integer part of the
 absolute value and retains the sign. For example, the
 result of -1.5$I is -1!

$J Unconditional jump to a label. The label number must
 follow immediately!

$J+ Jump only when the result of the previous instruction
 was positive. A label number must follow immediately!

$J- Jump only when the result of the previous instruction
 was negative. A label number must follow immediately!

$K Call the keyboard input routine which produces an input
 string to be used with the functions $M and $N. This
 function displays a blinking cursor on the screen and
 any characters entered through the keyboard are shown
 on the screen. The latter can be edited using the
 <delete> (7FH) key. <CR> or other control characters
 cause a return to the main program that called $K.

$L Natural logarithm function with the base e. Domain
 unlimited. Range limited to real numbers that can
 represent natural logarithms of real numbers. Negative
 arguments return a zero result.

$M Transforms an ASCII character from the keyboard input
 string into a REAL (6 byte format) number. The string
 pointer is incremented by one character unless at the
 end of the string (returned value 13 or character <CR>).

$N Transforms a number represented by an input ASCII
 character string into a REAL (6 byte format) number.
 The string pointer is incremented to point to the next
 character after the number. Only integer and floating
 point decimal numbers are accepted. Entries in mantissa
 plus exponent format require to use the function $N twice
 and a short conversion routine.

$O Prints a number on the screen in the format specified by
 the following two constants. For instance:

 FGH$O7,3

 means that the value of the variable FGH will be
 printed with 7 decimal places in front of the decimal
 point and 3 decimal places after the decimal point.
 An overflow will be indicated with a pattern 9999999.999
 and an underflow with a pattern 0.000. In any case,
 12 characters will be printed: sign, up to 7 figures
 for the integer part, the decimal point and three
 figures for the fractional part. If the second constant
 is 0, the decimal point will not be printed.

$P Sign function. Its output is 1 for any positive number,
 -1 for any negative number and 0 for 0 input.

$Q Square root function. Domain unlimited. Negative inputs
 produce a zero result. Range all positive integers that
 can be square roots.

$R Return from subroutine (called by "$Z" plus label).

$S Sine function. Domain unlimited. Range between -1 and +1.

$T Tangent function. Domain unlimited. Range unlimited.

$U Clock function. It produces an input string in the form
 "yy mm dd hh mm ss" to be read by the $M and $N functions,
 just like if the date and time were input from the
 keyboard using $K.

$W Prints the ASCII character corresponding to the given
 number.

$Z Call to subroutine. A label must follow immediately!

$Z+ Call only when the result of the previous instruction
 was positive. A label must follow immediately!

$Z- Call only when the result of the previous instruction
 was negative. A label must follow immediately!

 Jumps, conditional jumps and calls to subroutines are
performed to labels. Labels are denoted by the symbol "#"
followed by a label number. For example:

#345

is a valid label. The expression:

NJ-W$j+345

will cause a conditional jump on the above label only when
the difference of NJ minus W is positive. If the result of the
operation is zero, the operation is undefined: the jump may
or may not occur!
 Comments should be written between the symbols "<" and ">"
and are ignored by the compiler program. For instance, the
expression:

<This is a valid comment and will be ignored by the compiler>

is simply skipped by the compiler program. Note that the
function "$<" uses a similar syntax, however the latter
does have an effect on the execution of the program!
 Machine code routines can be inserted in hexadecimal
format using the expression "&<" to begin and ">" to end a
hexadecimal listing.
 The high-level language compiler produces a machine code
program that includes the following parts:

- Program header
- Table of array variables
- Table of single variables
- Table of labels
- Compiled program

 The compiled program uses all of the 16 general purpose
registers of the CPU. The content of some of the registers
should not be modified in an uncontrolled way to avoid
crashing of the following compiled code: These are:

A7 - stack pointer
A6 - base address of input string buffer
A5 - base address of arithmetic routines (TRAP10)
A4 - base address of variables and labels
A3 - input string buffer pointer

 Some registers can be used immediately to communicate with
the high-level language when inserting machine code routines.
These are:

A2 - Offset of the variable address
D1 - 16 bit exponent of the current math expression
D0 - 32 bit signed mantissa of the current math expression

 Registers A1, A0, D7, D6, D5, D4, D3 and D2 are only used
by arithmetic expressions and functions to hold intermediate
computation results and their content can be modified without
affecting the execution of the compiled high-level language
program.

 Further directions for using the high-level language
compiler, either high-level language only or used together
with machine code and operating system routines, can be found
in the many application programs supplied for the DSP computer,
and in particular their source code listings. The compiler
only includes functions that were found necessary in writing
applications software for the DSP computer. Although the latter
may seem very restricted when compared to a commercial compiler
running on a commercial computer, the trade-off is computation
speed. The code produced by the high-level language compiler
running on a 10MHz MC68010 can do about 20000 basic arithmetic
operations (addition, multiplication or division) per second or
compute about 1200 trigonometric functions (sine or cosine) per
second.

8. PROGRAMMING HINTS

 Regardless of the software support available, efficient
real-time programming of any computer requires using its
peripherals directly and thus writing small portions of the
software directly in machine code. This is especially true
if new peripherals are added to the computer, since no
software support is available.
 Considering the above fact, the software support in the
high-level language compiler is intentionally kept to a
minimum: it only includes the basic routines for keyboard input
and screen output. On the other hand, the compiler is designed
to allow very simple insertion of machine-code programs of any
size and rather simple communication between machine code and
high-level language software.
 In order to write machine code programs it is necessary
to study the hardware first, and in particular the
microprocessor used. A complete description of the MC68010
microprocessor can be found in the following two books:
1) Motorola: 16-bit Microprocessors Data Manual, 1983.
2) Motorola: M68000 16/32-bit Microprocessor Programmer's
 Reference Manual, 1984.
 Transferring parameters between machine-code routines and
the high-level language main program can be accomplished in
may different ways. To transfer single variables (not arrays)
registers D0 and D1 can be used. For example, the expression:

AAA&< ...HEX machine-code program... >

supplies the mantissa of the variable AAA in D0.L (32 bits)
and the exponent of the variable AAA in D1.W (16 bits). Both
can then be used by the machine code program. Similarly, the
expression:

&< ...HEX machine-code program... >=AAA

assigns D0.L to the mantissa of the variable AAA and D1.W to
the exponent of the variable AAA. Since machine-code programs
require signed or unsigned integer data, the high-level

language program has to care about the necessary conversions
from and back to the floating-point format. A very simple way
to perform these conversions is to use a special constant,
defined by the floating point format used:

65536*32768=npr ...or... &<7000 323C 801F>=npr

Conversion from floating point to unsigned integer is then a
simple addition operation. For example, the program:

AAA+npr&<13C0 0001 0003>

converts the value of the variable AAA to unsigned integer
(of course npr has to be defined before!). The unsigned integer
is available in D0.L. The following machine-code program
takes the low-order 8 bits of D0.L and writes them to the
immediate address 00010003H (spare parallel output port on the
CPU board). The above program is thus equivalent to the BASIC
"POKE" instruction.
 This simple conversion rule also works in the opposite
direction. For example, the expression:

npr&<1039 0001 0001>-npr=AAA

first sets D0.L and D1.W to npr, then reads a byte from the
immediate address 00010001H (keyboard) into the low-order 8bits
of register D0, then converts the result from unsigned integer
to floating point and finally assigns the result to the
variable AAA. The operation of the above expression is thus
similar to the BASIC "PEEK" instruction.
 Using different constants, conversions to and from
signed integer format of any length up to 32 bits can be
performed in a similar way.
 On the other hand, high-level language variables can be
used to store or transfer binary data between machine code
routines. In this case no conversions are necessary, since
these variables are not being used by the high-level language
functions. For example, suppose that a machine-code DSP
routine needs 1kbyte of memory space for a lookup table.
This memory space can be assigned by declaring a high-level
language array variable of suitable dimensions: The expression:

$:buffer(170) buffer(0)&<200A D08C>=address

first declares an array of 171 elements. Since every element
requires 3 words or 6 bytes, this totals up to 171*6=1026bytes.
The expression "buffer(0)" computes the relative address of the
first element and stores it in A2. The following machine code
adds A4 to A2 thus computing the absolute address of the first
element of the array in D0.L and finally stores the result in
the variable "address". The start address of the 1kbyte memory
area is thus computed dynamically during program execution and
conveniently stored in a variable that can be accessed at any
time.
 DSP programming usually includes both programming in
machine code for the DSP algorithm itself and programming in a

high-level language to support and use the DSP routines. To
recall the DSP routines periodically interrupts have to be
used. The following discussion describes how this can be done
efficiently on the DSP computer described.
 When a MC68010 microprocessor receives an interrupt
request with a priority level higher than the current processor
priority (described with the corresponding bits in the status
register) a call to the interrupt handling routine is made.
Start addresses of interrupt handling routines are stored
together with other exception vectors in the exception vector
table in the computer memory. The exception vector table is
located in the system RAM during normal program execution
(except at power-up). Its start address is stored in the Vector
Base Register (VBR).
 Hardwired logic on the processor board makes the MC68010
to operate in the auto-vector mode: each interrupt level is
assigned a single vector in the exception vector table. After
reset, all interrupt vectors are pointing to an error handling
routine (except interrupt 7 - the operator keyboard) and the
processor priority is set to 7. To use an interrupt, the
following has to be made exactly in the order given:
1) Replace the current interrupt vector with a vector pointing
 to the interrupt handling routine.
2) Initialize the peripheral that will request the interrupt.
3) Adjust the processor priority level if required.
After the interrupt is no longer being used, the following has
to be made to restore the original conditions:
1) Disable the peripheral requesting the interrupt.
2) Return the default interrupt vector (pointing to the error
 handling routine).
3) Return the processor priority level if modified.
The address of the memory location containing the interrupt
vector is computed by adding the corresponding offset to the
start address stored in the VBR. The offset is 64H for INT1
level auto-vector, 68H for INT2 ... up to 7CH for INT7.
 From the user point of view it is very convenient to build
interrupt routines into high-level language programs that can
be handled or compiled as any other program. The compiler
produces relocatable .EXE program files: the operating system
considers that an .EXE file can be executed on any memory
address. However, the exception vector table contains absolute
addresses. The program should therefore include a routine to
compute the interrupt routine address dynamically each time
the program is executed on a new memory location.
 In the case of the MC68010 it is convenient to use the
Load Effective Address instruction, in particular LEA d(PC),An
to find the actual program counter. The address-finding routine
is usually located just in front of the interrupt routine so
that the unknown start address can be computed easily.
 Interrupt routines are usually DSP routines written almost
entirely in machine code. However, high-level language
expressions are necessary to interface to the rest of the
program. Whenever a call to an interrupt routine is made, it
is necessary to save the content of the microprocessor internal
registers on the stack and restore it before exiting from the
routine. Considering the many MC68010 internal register this

operation may be very time consuming. Since most DSP machine
code routines only need a few registers, only the latter are
saved and restored before exit to save CPU time. High-level
language expressions however use all MC68010 registers!
 Programs designed for use in an interrupt driven
multitasking environment require some additional features.
Since different interrupt routines may belong to different main
programs and the interrupt nesting is arbitrary, the content
of all microprocessor registers is completely unknown when
entering an interrupt routine. If high-level language
expressions are used in interrupt routines, the values of
registers containing base addresses, usually A4 and A5, have to
restored for correct operation.

9. FUTURE UPGRADES

 The DSP operating system V7.3 is the result of a long
evolution. Therefore no major upgrades are planned for the
operating system itself: any further upgrades are therefore
planned just as applications software.
