
 A simple TNC for megabit packet-radio links
 ===

 Matjaz Vidmar, S53MV

1. Computer interfaces for packet-radio

 Computers were essential parts of packet-radio equipment
right from its beginning more than two decades ago. Since
at that time computers were not easily available and were much
less capable than today, most amateurs started their activity
on packet-radio with an old ASCII terminal. The ASCII terminal
required an interface called TNC (Terminal Node Controller).
The TNC interface lead to a standardization of the protocol
used and to a worldwide acceptance of the AX.25 standard.
 Today there are many different interfaces called TNC. The
most popular is the TNC2, originally developed by TAPR (Tucson
Area Packet Radio) and afterwards cloned elsewhere. Lots of
software was written for the TNC2 too, ranging from simple
terminal interfaces to complex computer interfaces and even
network nodes.
 As more powerful computers became available, some
functions of the TNC were no longer required. In fact, some
early TNC software, designed to work with dumb ASCII terminals,
represented a bottleneck for efficient computer file transfer
or multi-connect operation. Most functions of the TNC were
therefore transferred to the host computer using the simple
KISS protocol, originally developed for TCPIP operation only.
Unfortunately, the KISS protocol adds additional delays in any
packet-radio connection.
 Today most computers allow a direct steering of a radio
modem up to about 10kbit/s, making the TNC completely
unnecessary. For higher speeds, different interface cards were
developed. These cards are plugged directly into the ISA bus
of IBM PC clones to avoid the delays and other problems caused
by external interfaces.
 The development of new TNCs and related software almost
stopped. Although there is lots of software available for the
popular TNC2 or its clones, most of the software is of very
poor quality. For medium-speed operation at 38400 or 76800bps,
even the simple KISS software is unreliable. The popular TNC2
will not go much beyond 76800bps, while more recent TNCs lack
software support.
 The first megabit PSK transceivers [3], [5], [6] were
intended for packet-radio node interconnects [1]. Their price
and complexity was relatively unimportant compared to the
reliability requirements and radio-range performance.
For megabit operation, the packet-radio nodes had to be
equipped with Direct-Memory Access (DMA) controllers and
efficient software. Besides our Slovenian "SuperVozelj" nodes
and the similar Italian "Itanet" project, most packet-radio
node hardware and software was unable to operate at megabit
speeds. In most parts of Europe, the FlexNet network is

effectively blocked by the inefficient 9600bps FSK modems.
 The Zero-IF technology made simple and efficient megabit
PSK radios very affordable even in the form of NO-TUNE projects
[2], [4], [7], [8], [9]. The next step was to develop a simple
user interface. Marko Kovacevic, S57MMK, modified and improved
the popular Canadian "PI" packet interface card [10]. The
S57MMK card includes a Z8530 SCC serial interface chip, plugs
into an ISA slot in a PC-computer bus and uses the PC DMA for
fast data transfers. Strictly technically speaking, a DMA
interface card represents the best technical solution for
megabit packet-radio.
 Unfortunately, an ISA card can not be plugged into any
computer bus. Some computers even do not have ISA slots, like
laptops. The operation of some computers is unreliable on its
own even without additional hardware. Poorly-written software
and some other peripheral devices may not tolerate a
packet-radio interface card on the same bus. An additional
interface card, regardless of how well it is designed and
built, may cause problems with incompatible hardware and
software.
 Since new computers are equipped with faster, incompatible
and difficult-to-use buses, it is increasingly more difficult
to design packet-radio interface cards that plug directly into
the computer bus. TNCs in different forms are therefore coming
back, using one of the standard ports available on any computer
like RS232, printer port, Ethernet connector or even USB.
Since any such interface adds additional delays, using a TNC
is not the best technical solution.
 Unfortunately, a TNC has to be used in all cases when a
plug-in interface card on the computer bus can not be used.
Therefore suitable TNCs have to be developed. In this article
I am going to describe a very simple TNC that connects to the
RS232 port on the computer. The TNC allows the operation with
the described 1.2Mbit/s PSK radios [2], [4], [7], [8], [9], but
on most computers the real bottleneck is the 115.2kbit/s RS232.

2. Megabit TNC design

 Megabit serial interfaces usually require DMA hardware
for fast and efficient data transfers. DMA controllers are
therefore used in the "SuperVozelj" [1] and in other high-speed
packet-radio node projects. Besides adding complexity, a DMA
controller also requires a critical handshake with the CPU,
since the CPU and the DMA must be synchronized to access the
same bus.
 The development of high-speed serial interfaces is
slowly moving away from dedicated hardware like DMA
controllers. For example, the MC68360 communications processor
includes four fast serial ports with DMA data transfers that
are internally built with a single RISC processor. The actual
protocol as well as data transfer to or from the CPU bus is
selected by simply changing the software running on the RISC
processor.
 In the case of amateur packet-radio, most AX.25 frames
are relatively short. AX.25 therefore requires lots of
processing for moderate data transfers. The required CPU

processing power usually exceeds that of a DMA controller.
A detailed analysis shows that a DMA controller may be
completely unnecessary even for megabit AX.25 terminals.
 A simple solution was therefore sought for a megabit TNC,
including the selection of easy-to-get components. A careful
analysis of the instruction set and required clock cycles of
the popular 68000 microprocessor family has shown that megabit
transfers from or to the well-known Z8530 serial-communications
controller can be handled by interrupts, provided that a few
registers are dedicated permanently to the interrupt-service
routines.
 For the first experiments I modified an old "SuperVozelj"
CPU card with a MC68010 processor. The experiments have shown
that for simplex 1.2288Mbit/s operation with PSK radios [2],
[4], [7], [8], [9], a minimum clock speed of about 15MHz is
required, in good agreement with the estimates of the
interrupt-routine clock cycles. A completely new TNC CPU board
was then designed around up-to-date CMOS parts like the
MC68HC000 CPU and Z85C30 SCC.
 The wiring diagram of the CPU, memory and serial port is
shown on Fig.1. Just like the "SuperVozelj" node, the 16-bit
CPU in the TNC boots from a single, cheap and relatively slow
8-bit 27C256 EPROM. The 16-bit instructions are read from the
8-bit EPROM in two steps, while the upper 8-bits of the
instruction are temporarily stored in the 74HC374 latch.
The content of the EPROM is copied to the 16-bit-wide RAM
immediately after reset to allow fast instruction fetching
without any wait states.
 The Z85C30 serial-communications controller is connected
to the lower 8 bits of the data bus. Simple and fast interrupt
routines are triggered by the two outputs: /REQA (radio channel
to INT3) and /REQB (RS232 interface to INT1). The latter are
usually used for DMA transfers. The /INT output of the Z83C30
is not used, since the latter includes many different
interrupt sources, unnecessarily slowing down the
interrupt-service routine or in the worst case delaying an
important high-speed data transfer because of an unimportant
status interrupt.
 Since the /INT output of the Z85C30 is not used, the
interrupt vector for the MC68HC000 has to be provided
externally. The MC68HC000 is able to generate interrupt
"autovectors" on its own by asserting /VPA during an interrupt
acknowledge, however this may add up to 15 additional wait
states for every interrupt! The interrupt vector is therefore
provided by the 74HC244 in exactly the same way as the /VPA,
but without additional wait states.
 The MC68HC000 microprocessor, different memory chips and
Z85C30 SCC require some bus interface logic as shown on Fig.2.
To avoid metastable problems, all clocks are derived from a
single crystal oscillator. The crystal oscillator supplies the
MC68HC000 clock and wait-state generator directly. The same
clock is divided by 2 by the first half of the 74HC74 to obtain
the Z85C30 PCLK.
 The 74HC138 is used to decode the upper address lines.
The 2N2369 transistor is used to protect the CMOS-RAM content
while the +5V power supply is turned off and during reset.

Of course, the CMOS RAM receives a continuous supply voltage
+CMOS at all times from a backup battery. The /RESET signal
is first buffered (1/4 74HC08) and is supplied to the
microprocessor (pins /RESET and /HALT) and Z85C30 (both /SCCWR
and /SCCRD low at the same time).
 Unlike the more powerful members of the MC68k family, the
MC68HC000 does not have a vector-base register (VBR). The
exception-(interrupt)-vector table is therefore always located
at the beginning of its address space. The interface logic is
therefore used to switch the beginning of the address space
from EPROM to RAM. At reset, the EPROM exception-vector table
is used. During normal startup of the TNC, the EPROM table is
replaced by the RAM table. The RAM table can be modified as
well as accessed without wait states.
 The changeover from EPROM to RAM is handled by the second
half of the 74HC74. This flip-flop is reset by the /RESET
signal to enable the EPROM access. The microprocessor then
copies the EPROM content into the RAM. After the RAM contains
valid software, the flip-flop is set by the microprocessor.
The EPROM is removed from the microprocessor's address space
and can no longer be accessed by the software. The EPROM can
only be accessed again by applying an external /RESET signal.
 The switching EPROM/RAM is controlled by the signals ROM
and /ROM. The ROM signal also enables the wait-state generator
with the 74HC164 shift register. Besides slowing down the CPU,
the 74HC164 also steers the upper 8 bits of the instruction
into the 74HC374 latch and increments the lowest (A0) address
of the EPROM. After the access to the EPROM is disabled, the
wait-state generator is disabled too and the /AS signal is
fed directly to /DTACK through two gates of the 74HC02. The
/DTACK signal is generated in all cases, while /BERR input to
the MC68HC000 is not used.
 The MC68HC000 bus control signals also need some decoding
to steer popular memory chips and peripheral devices: the
R//W signal has to be split into two independent /WR and /RD
signals. 74HC10 and 74HC32 gates are used for this purpose.
The signals /UWR, /LWR, /UWR and /LRD control the access to
the RAM, the signals /SCCWR and /SCCRD steer the Z85C30 and
the signal /ROMOE enables the EPROM.

3. Practical TNC construction

 In the practical construction I decided to build the TNC
as a series of modules that can be connected together as
required. The power supply, radio modem and RS232 interfaces
are therefore built as separate modules on their own
printed-circuit boards. The TNC printed-circuit board therefore
only includes the CPU, memory and serial port. In this way the
same TNC board can also be used for other purposes, for
example with different modems or as a simple two-channel
packet-radio node.
 The CPU, memory, serial port and bus interface logic are
located on a double-sided printed circuit board with the
dimensions of 120mmX120mm. Both sides of the printed-circuit
board are shown on Fig.3. The corresponding component location
is shown on Fig.4. The module only has two connectors.

A four-pin connector is used for the power supply: main +5V
supply, battery-backed +CMOS, /RESET signal and ground.
 Both channels of the Z85C30 serial port are available on
a 20-pin connector together with +5V, +CMOS and ground.
Besides serial data inputs and outputs, the control lines
/DCD, /CTS, /RTS and /DTR as well as both clocks RTXC and
TRXC are available for both channels. These allow to connect
the serial port to different modems and/or other interfaces.
 The MC68HC000 microprocessor is usually available in a
68-pin PLCC package and is generally used in GPS receivers,
fast hard-disk controllers and other applications where the
the processing power of a simple 8-bit microcontroller is not
sufficient. Since the soldering of a PLCC package is not a
simple operation, the printed-circuit board is designed for a
standard PLCC socket that spreads out the PLCC pins to a
comfortable 2.54mm (0.1") grid.
 The pins of the 68-pin PLCC socket are arranged in two
rows on each of the four sides of the square socket. The
socket pin-out is therefore somewhat different from the bare
PLCC package as shown on Fig.5. The MC68HC000 microprocessor
has two unused pins labeled "NC" in the 68-pin PLCC version.
The microprocessor should be carefully pushed in the PLCC
socket. On the other hand, a special tool is required to
extract the microprocessor from the socket. Special tools can
be avoided if the PLCC socket is further inserted in a 68-pin
PGA socket (large version 11X11) that is finally soldered into
the printed-circuit board.
 While building the megabit TNC, it makes sense to install
all integrated circuits on good-quality sockets. The TNC will
work with 128kbyte RAM chips (628128) or with 32kbyte RAM
chips (62256). In the latter case, the 28-pin 32kbyte RAM
chips should be inserted in the bottom part of the 32-pin
sockets so that pin 1 of the RAM corresponds to pin 3 of the
socket. The TNC will also work with 32kbyte, 64kbyte or
128kbyte "cache" RAM chips from old "486" motherboards. Since
these RAMs are packaged in narrower packages, their pins
should be spread out or a suitable adapter should be built
to fit in the wider standard RAM socket.
 The relatively short bus connections allow high clock
speeds for the TNC CPU. Experiments have shown that the
maximum clock speed does not depend much on the CPU used, but
rather on the RAM access time. A 10MHz version of the
MC68HC000 will work with 70ns RAMs up to 33MHz, while a 16MHz
version of the MC68HC000 will reach 40MHz with 20ns "cache"
RAMs. The CMOS version of the SCC chip Z85C30 also allows much
higher clock frequencies than specified: a 8MHz version
usually works perfectly at 15MHz PCLK (CPU at 30MHz).
 Since all tested combinations of CPUs and memories
always achieved a maximum clock frequency of at least 25MHz,
a CPU clock of at least 20MHz is recommended for the megabit
TNC. The exact clock frequency also depends on the usable
division modulos inside the Z85C30 to obtain standard data
rates. If the 1.2288MHz clock on the radio side comes from
the scrambler module [2], [4], [8], [9], then the Z85C30
dividers only supply the RS232 baud-rate.
 A RS232 baud-rate of 115.2kbit/s can be obtained from a

CPU clock frequency of 14.7456MHz, 22.1184MHz or 29.4912MHz.
Although the TNC may work at 14.7MHz, this clock is too low
for reliable operation at 1.2288Mbit/s on the radio side.
Therefore 22.1MHz or 29.4MHz are recommended. Of course, any
clock frequency can be used for the CPU if an external clock
of 1.8432MHz is supplied to RTXCB. While using the TNC for
lower kilobit data rates on the radio port, there is much more
freedom in choosing the clock frequency.

4. Radio and RS232 interfaces

 The megabit TNC is designed to work with different
modems. The most common combination is a scrambler/
bit-synchronizer on channel A and a RS232 interface on
channel B od the serial-communications controller Z85C30.
The scrambler/bit-synchronizer [2], [4], [8], [9] includes
many modem functions like clock recovery and descrambling
for the received data and clock generation and data scrambling
for the transmitted data.
 The scrambler is connected to the Z85C30 channel A with
five signal wires plus ground. The signals include: received
data (RXD), clock (connected to RTXC), carrier detect (/DCD),
PTT command (/RTS) and transmitted data (/TXD). In this case
the input /CTS, output /DTR and clock TRXC are not used on
channel A. An unused CMOS input should be connected to ground
or to any other signal.
 Some other modems for lower kilobit rates may require
internal clock recovery inside the Z85C30. In this case, the
modem is connected with just four wires besides ground:
received data (RXD), carrier detect (/DCD), PTT command (/RTS)
and transmitted data (TXD). The TNC software programs the
Z85C30 to supply the regenerated clock from the internal DPLL
on the TRXC output. An external jumper is required to bring
this clock to RTXC. Of course, the correct divider modulo
should be set by the software.
 If more than one modem is installed in the TNC, then
the channel A inputs RXD, /DCD and RTXC have to be switched
among the different modems and/or other clock sources. All
of the modems should receive their supply voltage at all times
so that it is not necessary to switch the channel A outputs
/RTS and TXD.
 A TNC is usually connected to a host computer through a
RS232 interface. Unfortunately, the latter represents a real
bottleneck for a megabit TNC, since the highest RS232 baud-rate
is 115.2kbit/s on most computers. The RS232 interface also
includes a polarity inversion on all signals and a logic-level
shift to higher positive and negative voltages.
 A very simple RS232 interface can be built with the
integrated circuit MAX232 as shown on Fig.6. The MAX232
includes two RS232 transmitters, two RS232 receivers and two
DC/DC converters to obtain +10V and -10V from a single +5V
supply. Unfortunately, the MAX232 also includes low-pass filters
on both transmitters to limit radio interference. These
low-pass filters also limit the available data rate to about
150kbit/s.
 The RS232 interface is built on a small, single-sided

printed-circuit board with the dimensions of 54mmX44mm, as
shown on Fig.7. The printed-circuit board is supported by an
angled female D52 connector so that additional mounting screws
are not required. The corresponding component location is
shown on Fig.8. The female D25 connector is wired to fit the
male RS232 D25 connector on PC COM ports.
 While using the RS232 interface on channel B of the
Z85C30, the /DCD input and /DTR output remain unused. An
unused CMOS input should be connected to ground or to any
other signal. If the internal clock source in the Z85C30 is
used, then a jumper from TRXC to RTXC is required. An external
clock source can also be connected to the RTXC input. In the
latter case, the external clock frequency should equal 16-times
the desired baudrate or 1.8432MHz for 115.2kbit/s.

5. Power supply and reset circuit

 The described TNC is intended to be operated from a 12V
power supply with the negative grounded like most radio-amateur
equipment. Of course, the digital circuits of the TNC require
a +5V supply. If any program parameters are stored in the
CMOS RAM, then the latter requires a battery-backed supply
+CMOS. Finally, the TNC requires a reset circuit that operates
reliably regardless of the power-up or power-down sequences.
 The circuit diagram of the power supply and reset circuit
is shown on Fig.9. A simple switching regulator is used to
obtain +5V from the available +12V external supply. The
switching regulator achieves an efficiency of about 80%, thus
halving the power consumption and heat generation when
compared to a conventional linear regulator. The +CMOS supply
is backed by a 3.6V 60mAh NiCd battery. An additional
protection of the CMOS RAM content is provided by the /RESET
signal by disabling the RAM chip select.
 The reset circuit senses the input voltage to the power
supply. The /RESET signal is only released after the input
voltage exceeds 9.5V. An additional delay is generated by
the 1.2kohmX470uF RC time constant. At power down, the 470uF
capacitor is discharged immediately through the 1N4001
diode, so that the /RESET signal is applied before the
switching regulator stops operating. Finally, the reset
circuit includes a small hysteresis (47kohm resistor) to
generate a clean /RESET signal on its output.
 The TNC power supply is built on a single-sided
printed-circuit board with the dimensions of 75mmX45mm, as
shown on Fig.10. The corresponding component location is shown
on Fig.11. Several mounting pads are provided for
different-style NiCd batteries.
 The total current drain of the described TNC equipped
with a scrambler/bit-synchronizer and RS232 interface amounts
to about 200mA at +5V or about 100mA at +12V with the
described power supply. At these current levels, the BD138
switching transistor does not require a heat sink. On the other
hand, the 100uH chokes must be able to handle these currents
too: chokes of the size of 1/2W resistors or even larger
should be used in the power supply.

6. Megabit TNC software

 The TNC software should allow a fast and reliable data
transfer between the TNC and the host computer or another
terminal. The software of the first TNCs was intended to be
used with dumb ASCII terminals. The RS232 communication was
therefore designed for direct typing on the keyboard and
readout on the CRT screen. Of course, such a simple interface
is not the best solution for computer file transfer or
multi-connect operation.
 WA8DED attempted to improve the communication between the
TNC and the host computer with his HOSTMODE protocol. In the
HOSTMODE protocol, the host computer continuously polls the
TNC to get new information. This requires the RS232 interface
being much faster than the radio interface, making the
HOSTMODE protocol useless for faster radio links.
 The WA8DED software was cloned elsewhere. Maybe the
best-known clones are those from NordLink. Unfortunately,
no one removed some important bugs from the original WA8DED
code that corrupt the data and crash the TNC software or the
host computer. Even worse, the same bugs were also transferred
to the software that emulates a HOSTMODE TNC on a PC computer
(TFPCX, TFKISS etc). For this reason, the HOSTMODE protocol
is now almost forgotten.
 The only RS232 protocol used by most TNCs seems to be the
KISS (Keep It Simple Stupid) protocol. The KISS protocol
simply transfers the same, unprocessed AX.25 frames over the
RS232 interface. The AX.25 protocol is therefore handled by
the host computer except for a few timing functions tightly
connected to the radio modem, like receive/transmit changeover.
 The KISS protocol transmits the data as 8-bit bytes on
an asynchronous serial interface. The beginning and the end of
AX.25 frames are marked with FEND ($C0) characters. When a
FEND character appears inside an AX.25 frame, it is replaced
by the sequence FESC, TFEND ($DB, $DC). The special character
FESC also requires a replacement if appearing inside an AX.25
frame. FESC is replaced by FESC, TFESC ($DB, $DD). By
definition, the KISS protocol does not make any use of the
RS232 control lines (CTS, RTS etc).
 The KISS frames are equipped with an additional control
byte in front of the AX.25 frame. The control byte allows
the selection of up to 16 radio ports on a multi-port TNC
(upper four bits) and setting a few parameters of each radio
channel (lower four bits). An AX.25 frame is identified by
the lower four bits set to zero, while a value different from
zero sets some TNC parameters. An exception is represented
by the control byte $FF that is usually used to switch the
TNC (back) to another mode of operation.
 Most KISS frames have the first (control) byte set to
zero ($00), since we only have single-channel TNCs and most
KISS frames carry AX.25 frames. Setting the TNC parameters
TX delay, TX tail, ppersistance and slottime and selecting
simplex or duplex operation as well as quitting the KISS
mode of operation with special control bytes proved to be a
poor solution in practice. Any errors on the RS232 interface
may program the TNC in some useless operating mode and crash

the AX.25 link.
 Although the RS232 link includes just a short length of
cable between the TNC and the host computer, transmission data
errors occur frequently on the RS232 interface. The main cause
is the poor design of PC interrupts. A lower-priority interrupt
may stop the interrupt-driven RS232 data transfer leading to
loss of data. Serial ports with FIFO registers may save some
data, but they are still unable to guarantee an error-free
data transmission.
 RS232 errors can be tolerated in TCPIP operation, since
all TCPIP frames include their own, internal CRC checksum.
Of course, RS232 errors corrupt the data in conventional AX.25
contacts. Special KISS protocols including a two-byte CRC at
the end of the frame, just like in the HDLC AX.25 frames, have
been developed to detect and automatically reject corrupted
frames.
 Of course, both the TNC software and the host-computer
software should detect automatically what kind of KISS protocol
is being used: the last two bytes in a frame may be a 16-bit
CRC computed in different ways or simply two valid data bytes.
SMACK (Stuttgarts Modifiziertes Amaturfunk-CRC-KISS) is a KISS
protocol with two CRC bytes at the end of each frame. The
SMACK frames are marked with a $80 control byte at the
beginning of each frame, since there are no TNCs available
with more than 8 radio ports.
 SMACK is using the same CRC polynomial-division algorithm
as conventional AX.25 HDLC frames, except that the polynomial
generator is started from an all-zero condition. The latter
is a poor choice and may not detect some types of errors on
the RS232 interface. The FlexNet group corrected this problem
by developing their own CRC algorithm. KISS frames with a
FlexNet-CRC are marked with a $20 control byte at the
beginning of each frame, since multi-port TNCs are no longer
being used.
 The requirements for the TNC software are exactly
defined: the TNC should communicate in the conventional-KISS
protocol without CRC as well as in both CRC versions, SMACK and
FlexNet-CRC. All three KISS protocols are being used by almost
all available packet-radio software running on host computers.
The critical timing and operational parameters of the TNC are
best burned once forever in the TNC EPROM rather than being
modified by RS232 errors in an uncontrolled way.
 The megabit TNC has some additional requirements. Since
the radio interface is an order of magnitude faster than the
maximum RS232 speed, the TNC should check the call signs of
all frames and reject useless frames addressed to other
stations. An even better solution is a small packet-network
node to handle the retries on both the radio and RS232 sides.
 The described TNC was first tested with simple KISS
software including both CRC variants. Besides the
currently-available KISS/SMACK/FlexNet software, many other
software upgrades are planned for the described TNC, including
a small packet-radio node similar to the SuperVozelj nodes.
All software is available as documented 68k ASM source as well
as compiled EPROM files on our packet-radio mailbox S50BOX.
 The current KISS software supports a simple interface

to adjust the important program parameters like filter
call sign, TX delay, TX tail, ppersistance and KISS protocol
(no-CRC, SMACK or FlexNet). These parameters are simply typed
in the "unproto" mode and transmitted as UI (beacon) frames
to the callsign "TNC". The TNC will answer with UI frames too,
showing the current parameter settings. This simple protocol
resulted very reliable and at the same time accessible at any
time from any packet-radio terminal program.
 The current software version copies the default
parameters from the EPROM after every reset and does not make
any use of the CMOS battery. However, future versions will
probably use the nonvolatile CMOS RAM at least to store the
program parameters and call sign.
 There are also a few restrictions imposed by the hardware
simplicity of the described megabit TNC. Three address
registers A4, A5, A6 and two data registers D6 and D7 are used
at all times by the high-speed interrupt routines, so they
can not be used by other TNC software. The radio-port
interrupts are designed for simplex operation only.

7. Megabit TNC applications

 The described megabit TNC was initially intended to prove
that a simple circuit can perform much better than complex and
expensive hardware. In particular, complicated DMA circuits
and other interfaces are probably not required for high-speed
packet-radio. The described megabit TNC probably shows the
evolution of future packet-radio hardware: most problems will
be solved with standard, inexpensive parts programmed for our
purposes.
 Practical experiments with the described TNC equipped
with simple KISS software and FlexNet driver running on the
host computer have shown an average data throughput of about
25kbit/s or 3kbyte/s in a real network with many other users
active on the same channel at the same time. A small-node
software in the TNC to handle separately the retries on the
radio side as well as on the RS232 side could probably double
this figure before reaching the 115.2kbit/s RS232 bottleneck.
Some improvement could also be obtained with a better driver
than FlexNet, since the timing constants of the latter are
programmed for 9600bit/s modems and can not be changed.
 For the packet-radio user, a megabit TNC on the RS232
interface is certainly a slower solution than a DMA card in
the computer bus, mainly thanks to the 115.2kbit/s RS232
bottleneck. The megabit TNC is therefore an interesting
solution only when a DMA card can not be used, like laptop
computers, or due to conflicts with other hardware and/or
software in the same computer. Of course, a megabit TNC
equipped with an Ethernet, USB or even parallel printer-port
interface could perform much better.
 For the network developer or sysop, the megabit TNC may
have advantages too. Most important, one single user can never
get all of the capacity of a megabit channel thanks to his/her
RS232 bottleneck, thus blocking the access to other users.
A megabit TNC also allows testing new protocols in the network
without changing the actual user terminal software running on

host computers.
 A megabit TNC also represents an ideal interface to older
node hardware, like the RMNC/FlexNet nodes used elsewhere in
Europe. The efficient megabit PSK transceivers, although
described in detail in several places: [2], [3], [4], [5],
[6], [7], [8], are not widely used outside Slovenia and Italy,
probably just because popular packet-radio node hardware can
not operate at megabit speeds directly, without a megabit TNC
interface.
 Finally, the described megabit TNC equipped with CMOS
parts can also work as a simple, very low-power digipeater
already with the currently-available KISS software. The
overall current consumption of the TNC is about 100mA at 12V.
Adding about 200mA for the 23cm PSK transceiver, the whole
digipeater can be powered with a 50W solar panel and a large
"diesel" car battery.

References:

 [1] Matjaz Vidmar: "1.2Mbit/s SuperVozelj packet-radio node
 system",
 Scriptum der Vortraege, 40. Weinheimer UKW Tagung,
 Weinheim, Germany, 16-17 September 1995, pages 240-252.

 [2] Matjaz Vidmar: "23cm PSK Packet-radio TRX for 1.2Mbit/s
 user access",
 Scriptum der Vortraege, 41. Weinheimer UKW Ttagung,
 Weinheim, Germany, 21-22 September 1996, pages 25.1-25.15.

 [3] Matjaz Vidmar: "13cm PSK Transceiver for 1.2Mbit/s
 Packet Radio",
 15th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE,
 Seattle, Washington, USA, September 20-22, 1996,
 pages 145-175.

 [4] Matjaz Vidmar: "23cm PSK Packet-Radio RTX for 1.2Mbit/s
 User Access",
 15th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE,
 Seattle, Washington, USA, September 20-22, 1996,
 pages 176-202.

 [5] Matjaz Vidmar: "13cm PSK Transceiver for 1.2Mbits/s
 Packet Radio, Part-1",
 VHF-Communications 3/1996, pages 130-147.

 [6] Matjaz Vidmar: "13cm PSK Transceiver for 1.2Mbit/s
 Packet Radio, Part-2 (conclusion)",
 VHF-Communications 4/1996, pages 194-205.

 [7] Matjaz Vidmar: "23-cm-Packet-Radio-Transceiver fuer
 1.2-Mbit/s-Benutzerzugriffe, Teil 1",
 AMSAT-DL Journal 3/1996, pages 42-44.

 [8] Matjaz Vidmar: "Design des 23-cm-Null-ZF-PSK-Transceivers"
 AMSAT-DL Journal 4/1996, pages 11-26.

 [9] Matjaz Vidmar: "23cm PSK Packet Radio Transceiver for
 1.2Mbit/s User access",
 VHF-Communications 2/1997, pages 74-96.

[10] Marko Kovacevic: "PC komunikacijska kartica za hitri
 packet-radio",
 CQ ZRS 5/1997, pages 38-42.

List of figures:

Fig. 1 - CPU, memory and serial port.
Fig. 2 - Bus interface logic.
Fig. 3 - TNC double-sided printed-circuit board.
Fig. 4 - TNC component location.
Fig. 5 - CPU and serial-port pin-outs.
Fig. 6 - RS232 interface.
Fig. 7 - RS232 printed-circuit board.
Fig. 8 - RS232 component location.
Fig. 9 - Power supply and reset circuit.
Fig. 10 - Power-supply printed-circuit board.
Fig. 11 - Power-supply component location.

