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1. Computer interfaces for packet-radio

Computers were essential parts of packet-radio equipment 
right from its beginning more than two decades ago. Since at that 
time computers were not easily available and were much less 
capable than today, most amateurs started their activity on 
packet-radio with an old ASCII terminal. The ASCII terminal 
required an interface called TNC (Terminal Node Controller). The 
TNC interface lead to a standardization of the protocol used and 
to a worldwide acceptance of the AX.25 standard.

Today there are many different interfaces called TNC. The 
most popular is the TNC2, originally developed by TAPR (Tucson 
Area Packet Radio) and afterward cloned elsewhere. Lots of 
software was written for the TNC2 too, ranging from simple 
terminal interfaces to complex computer interfaces and even 
network nodes.

As more powerful computers became available, some functions 
of the TNC were no longer required. In fact, some early TNC 
software, designed to work with dumb ASCII terminals, represented 
a bottleneck for efficient computer file transfer or multi-connect 
operation. Most functions of the TNC were therefore transferred to 
the host computer using the simple KISS protocol, originally 
developed for TCPIP operation only. Unfortunately, the KISS 
protocol adds additional delays in any packet-radio connection.

Today most computers allow a direct steering of a radio modem 
up to about 10kbit/s, making the TNC completely unnecessary. For 
higher speeds, different interface cards were developed. These 
cards are plugged directly into the ISA bus of IBM PC clones to 
avoid the delays and other problems caused by external interfaces.

The development of new TNCs and related software almost 
stopped. Although there is lots of software available for the 
popular TNC2 or its clones, most of the software is of very poor 
quality. For medium-speed operation at 38400 or 76800bps, even the 
simple KISS software is unreliable. The popular TNC2 will not go 
much beyond 76800bps, while more recent TNCs lack software 
support.

The first megabit PSK transceivers [3], [5], [6] were 
intended for packet-radio node interconnects [1]. Their price and 
complexity was relatively unimportant compared to the reliability 
requirements and radio-range performance. For megabit operation, 
the packet-radio nodes had to be equipped with Direct-Memory 
Access (DMA) controllers and efficient software. Besides our 
Slovenian "SuperVozelj" nodes and the similar Italian "Itanet" 
project, most packet-radio node hardware and software was unable 
to operate at megabit speeds. In most parts of Europe, the FlexNet 
network is effectively blocked by the inefficient 9600bps FSK 
modems.



The Zero-IF technology made simple and efficient megabit PSK 
radios very affordable even in the form of NO-TUNE projects [2], 
[4], [7], [8], [9]. The next step was to develop a simple user 
interface. Marko Kovačevič, S57MMK, modified and improved the 
popular Canadian "PI" packet interface card [10]. The S57MMK card 
includes a Z8530 SCC serial interface chip, plugs into an ISA slot 
in a PC-computer bus and uses the PC DMA for fast data transfers. 
Strictly technically speaking, a DMA interface card represents the 
best technical solution for megabit packet-radio.

Unfortunately, an ISA card can not be plugged into any 
computer bus. Some computers even do not have ISA slots, like 
laptops. The operation of some computers is unreliable on its own 
even without additional hardware. Poorly-written software and some 
other peripheral devices may not tolerate a packet-radio interface 
card on the same bus. An additional interface card, regardless of 
how well it is designed and built, may cause problems with 
incompatible hardware and software.

Since new computers are equipped with faster, incompatible 
and difficult-to-use buses, it is increasingly more difficult to 
design packet-radio interface cards that plug directly into the 
computer bus. TNCs in different forms are therefore coming back, 
using one of the standard ports available on any computer like 
RS232, printer port, Ethernet connector or even USB. Since any 
such interface adds additional delays, using a TNC is not the best 
technical solution.

Unfortunately, a TNC has to be used in all cases when a plug-
in interface card on the computer bus can not be used. Therefore 
suitable TNCs have to be developed. In this article I am going to 
describe a very simple TNC that connects to the RS232 port on the 
computer. The TNC allows the operation with the described 
1.2Mbit/s PSK radios [2], [4], [7], [8], [9], but on most 
computers the real bottleneck is the 115.2kbit/s RS232.



2. Megabit TNC design

Megabit serial interfaces usually require DMA hardware for 
fast and efficient data transfers. DMA controllers are therefore 
used in the "SuperVozelj" [1] and in other high-speed packet-radio 
node projects. Besides adding complexity, a DMA controller also 
requires a critical handshake with the CPU, since the CPU and the 
DMA must be synchronized to access the same bus.

The development of high-speed serial interfaces is slowly 
moving away from dedicated hardware like DMA controllers. For 
example, the MC68360 communications processor includes four fast 
serial ports with DMA data transfers that are internally built 
with a single RISC processor. The actual protocol as well as data 
transfer to or from the CPU bus is selected by simply changing the 
software running on the RISC processor.

In the case of amateur packet-radio, most AX.25 frames are 
relatively short. AX.25 therefore requires lots of processing for 
moderate data transfers. The required CPU processing power usually 
exceeds that of a DMA controller. A detailed analysis shows that a 
DMA controller may be completely unnecessary even for megabit 
AX.25 terminals.

A simple solution was therefore sought for a megabit TNC, 
including the selection of easy-to-get components. A careful 
analysis of the instruction set and required clock cycles of the 
popular 68000 microprocessor family has shown that megabit 
transfers from or to the well-known Z8530 serial-communications 
controller can be handled by interrupts, provided that a few 
registers are dedicated permanently to the interrupt-service 
routines.



For the first experiments I modified an old "SuperVozelj" CPU 
card with a MC68010 processor. The experiments have shown that for 
simplex 1.2288Mbit/s operation with PSK radios [2], [4], [7], [8], 
[9], a minimum clock speed of about 15MHz is required, in good 
agreement with the estimates of the interrupt-routine clock 
cycles. A completely new TNC CPU board was then designed around 
up-to-date CMOS parts like the MC68HC000 CPU and Z85C30 SCC.

The wiring diagram of the CPU, memory and serial port is 
shown on Fig.1. Just like the "SuperVozelj" node, the 16-bit CPU 
in the TNC boots from a single, cheap and relatively slow 8-bit 
27C256 EPROM. The 16-bit instructions are read from the 8-bit 
EPROM in two steps, while the upper 8-bits of the instruction are 
temporarily stored in the 74HC374 latch. The content of the EPROM 
is copied to the 16-bit-wide RAM immediately after reset to allow 
fast instruction fetching without any wait states.

The Z85C30 serial-communications controller is connected to 
the lower 8 bits of the data bus. Simple and fast interrupt 
routines are triggered by the two outputs: /REQA (radio channel to 
INT3) and /REQB (RS232 interface to INT1). The latter are usually 
used for DMA transfers. The /INT output of the Z83C30 is not used, 
since the latter includes many different interrupt sources, 
unnecessarily slowing down the interrupt-service routine or in the 
worst case delaying an important high-speed data transfer because 
of an unimportant status interrupt.

Since the /INT output of the Z85C30 is not used, the 
interrupt vector for the MC68HC000 has to be provided externally. 
The MC68HC000 is able to generate interrupt "autovectors" on its 
own by asserting /VPA during an interrupt acknowledge, however 
this may add up to 15 additional wait states for every interrupt! 



The interrupt vector is therefore provided by the 74HC244 in 
exactly the same way as the /VPA, but without additional wait 
states.

The MC68HC000 microprocessor, different memory chips and 
Z85C30 SCC require some bus interface logic as shown on Fig.2. To 
avoid metastable problems, all clocks are derived from a single 
crystal oscillator. The crystal oscillator supplies the MC68HC000 
clock and wait-state generator directly. The same clock is divided 
by 2 by the first half of the 74HC74 to obtain the Z85C30 PCLK.

The 74HC138 is used to decode the upper address lines. The 
2N2369 transistor is used to protect the CMOS-RAM content while 
the +5V power supply is turned off and during reset. Of course, 
the CMOS RAM receives a continuous supply voltage +CMOS at all 
times from a backup battery. The /RESET signal is first buffered 
(1/4 74HC08) and is supplied to the microprocessor (pins /RESET 
and /HALT) and Z85C30 (both /SCCWR and /SCCRD low at the same 
time).

Unlike the more powerful members of the MC68k family, the 
MC68HC000 does not have a vector-base register (VBR). The 
exception-(interrupt)-vector table is therefore always located at 
the beginning of its address space. The interface logic is 
therefore used to switch the beginning of the address space from 
EPROM to RAM. At reset, the EPROM exception-vector table is used. 
During normal startup of the TNC, the EPROM table is replaced by 
the RAM table. The RAM table can be modified as well as accessed 
without wait states.

The changeover from EPROM to RAM is handled by the second 
half of the 74HC74. This flip-flop is reset by the /RESET signal 
to enable the EPROM access. The microprocessor then copies the 
EPROM content into the RAM. After the RAM contains valid software, 
the flip-flop is set by the microprocessor. The EPROM is removed 
from the microprocessor's address space and can no longer be 
accessed by the software. The EPROM can only be accessed again by 
applying an external /RESET signal.

The switching EPROM/RAM is controlled by the signals ROM 
and /ROM. The ROM signal also enables the wait-state generator 
with the 74HC164 shift register. Besides slowing down the CPU, the 
74HC164 also steers the upper 8 bits of the instruction into the 
74HC374 latch and increments the lowest (A0) address of the EPROM. 
After the access to the EPROM is disabled, the wait-state 
generator is disabled too and the /AS signal is fed directly to 
/DTACK through two gates of the 74HC02. The /DTACK signal is 
generated in all cases, while /BERR input to the MC68HC000 is not 
used.

The MC68HC000 bus control signals also need some decoding to 
steer popular memory chips and peripheral devices: the R//W signal 
has to be split into two independent /WR and /RD signals. 74HC10 
and 74HC32 gates are used for this purpose. The signals /UWR, 
/LWR, /UWR and /LRD control the access to the RAM, the signals 
/SCCWR and /SCCRD steer the Z85C30 and the signal /ROMOE enables 
the EPROM.



3. Practical TNC construction

In the practical construction I decided to build the TNC as a 
series of modules that can be connected together as required. The 
power supply, radio modem and RS232 interfaces are therefore built 
as separate modules on their own printed-circuit boards. The TNC 
printed-circuit board therefore only includes the CPU, memory and 
serial port. In this way the same TNC board can also be used for 
other purposes, for example with different modems or as a simple 
two-channel packet-radio node.

The CPU, memory, serial port and bus interface logic are 
located on a double-sided printed circuit board with the 
dimensions of 120mmX120mm. Both sides of the printed-circuit board 
are shown on Fig.3. The corresponding component location is shown 
on Fig.4. The module only has two connectors. A four-pin connector 
is used for the power supply: main +5V supply, battery-backed 
+CMOS, /RESET signal and ground.

Both channels of the Z85C30 serial port are available on a 
20-pin connector together with +5V, +CMOS and ground. Besides 
serial data inputs and outputs, the control lines /DCD, /CTS, /RTS 
and /DTR as well as both clocks RTXC and TRXC are available for 
both channels. These allow to connect the serial port to different 
modems and/or other interfaces.

The MC68HC000 microprocessor is usually available in a 68-pin 
PLCC package and is generally used in GPS receivers, fast hard-
disk controllers and other applications where the the processing 
power of a simple 8-bit micro-controller is not sufficient. Since 
the soldering of a PLCC package is not a simple operation, the 
printed-circuit board is designed for a standard PLCC socket that 
spreads out the PLCC pins to a comfortable 2.54mm (0.1") grid.



The pins of the 68-pin PLCC socket are arranged in two rows 
on each of the four sides of the square socket. The socket pinout 
is therefore somewhat different from the bare PLCC package as 
shown on Fig.5. The MC68HC000 microprocessor has two unused pins 
labeled "NC" in the 68-pin PLCC version. The microprocessor should 
be carefully pushed in the PLCC socket. On the other hand, a 
special tool is required to extract the microprocessor from the 
socket. Special tools can be avoided if the PLCC socket is further 
inserted in a 68-pin PGA socket (large version 11X11) that is 
finally soldered into the printed-circuit board.

While building the megabit TNC, it makes sense to install all 
integrated circuits on good-quality sockets. The TNC will work 
with 128kbyte RAM chips (628128) or with 32kbyte RAM chips 
(62256). In the latter case, the 28-pin 32kbyte RAM chips should 
be inserted in the bottom part of the 32-pin sockets so that pin 1 
of the RAM corresponds to pin 3 of the socket. The TNC will also 
work with 32kbyte, 64kbyte or 128kbyte "cache" RAM chips from old 
"486" motherboards. Since these RAMs are packaged in narrower 
packages, their pins should be spread out or a suitable adapter 
should be built to fit in the wider standard RAM socket.



The relatively short bus connections allow high clock speeds 
for the TNC CPU. Experiments have shown that the maximum clock 
speed does not depend much on the CPU used, but rather on the RAM 
access time. A 10MHz version of the MC68HC000 will work with 70ns 
RAMs up to 33MHz, while a 16MHz version of the MC68HC000 will 
reach 40MHz with 20ns "cache" RAMs. The CMOS version of the SCC 
chip Z85C30 also allows much higher clock frequencies than 
specified: a 8MHz version usually works perfectly at 15MHz PCLK 
(CPU at 30MHz).

Since all tested combinations of CPUs and memories always 
achieved a maximum clock frequency of at least 25MHz, a CPU clock 
of at least 20MHz is recommended for the megabit TNC. The exact 
clock frequency also depends on the useable division modulos 
inside the Z85C30 to obtain standard data rates. If the 1.2288MHz 
clock on the radio side comes from the scrambler module [2], [4], 
[8], [9], then the Z85C30 dividers only supply the RS232 baudrate.

A RS232 baudrate of 115.2kbit/s can be obtained from a CPU 
clock frequency of 14.7456MHz, 22.1184MHz or 29.4912MHz. Although 
the TNC may work at 14.7MHz, this clock is too low for reliable 
operation at 1.2288Mbit/s on the radio side. Therefore 22.1MHz or 
29.4MHz are recommended. Of course, any clock frequency can be 
used for the CPU if an external clock of 1.8432MHz is supplied to 
RTXCB. While using the TNC for lower kilobit data rates on the 
radio port, there is much more freedom in choosing the clock 
frequency.



4. Radio and RS232 interfaces

The megabit TNC is designed to work with different modems. 
The most common combination is a scrambler/ bit-synchronizer on 
channel A and a RS232 interface on channel B od the serial-
communications controller Z85C30. The scrambler/bit-synchronizer 
[2], [4], [8], [9] includes many modem functions like clock 
recovery and descrambling for the received data and clock 
generation and data scrambling for the transmitted data.

The scrambler is connected to the Z85C30 channel A with five 
signal wires plus ground. The signals include: received data 
(RXD), clock (connected to RTXC), carrier detect (/DCD), PTT 
command (/RTS) and transmitted data (/TXD). In this case the input 
/CTS, output /DTR and clock TRXC are not used on channel A. An 
unused CMOS input should be connected to ground or to any other 
signal.

Some other modems for lower kilobit rates may require 
internal clock recovery inside the Z85C30. In this case, the modem 
is connected with just four wires besides ground: received data 
(RXD), carrier detect (/DCD), PTT command (/RTS) and transmitted 
data (TXD). The TNC software programs the Z85C30 to supply the 
regenerated clock from the internal DPLL on the TRXC output. An 
external jumper is required to bring this clock to RTXC. Of 
course, the correct divider modulo should be set by the software.

If more than one modem is installed in the TNC, then the 
channel A inputs RXD, /DCD and RTXC have to be switched among the 



different modems and/or other clock sources. All of the modems 
should receive their supply voltage at all times so that it is not 
necessary to switch the channel A outputs /RTS and TXD.

A TNC is usually connected to a host computer through a RS232 
interface. Unfortunately, the latter represents a real bottleneck 
for a megabit TNC, since the highest RS232 baudrate is 115.2kbit/s 
on most computers. The RS232 interface also includes a polarity 
inversion on all signals and a logic-level shift to higher 
positive and negative voltages.

A very simple RS232 interface can be built with the 
integrated circuit MAX232 as shown on Fig.6. The MAX232 includes 
two RS232 transmitters, two RS232 receivers and two DC/DC 
converters to obtain +10V and -10V from a single +5V supply. 
Unfortunately, the MAX232 also includes low-pass filters on both 
transmitters to limit radio interference. These lowpass filters 
also limit the available data rate to about
150kbit/s.

The RS232 interface is built on a small, single-sided 
printed-circuit board with the dimensions of 54mmX44mm, as shown 
on Fig.7. The printed-circuit board is supported by an angled 
female D52 connector so that additional mounting screws are not 
required. The corresponding component location is shown on Fig.8. 
The female D25 connector is wired to fit the male RS232 D25 
connector on PC COM ports.

While using the RS232 interface on channel B of the Z85C30, 



the /DCD input and /DTR output remain unused. An unused CMOS input 
should be connected to ground or to any other signal. If the 
internal clock source in the Z85C30 is used, then a jumper from 
TRXC to RTXC is required. An external clock source can also be 
connected to the RTXC input. In the latter case, the external 
clock frequency should equal 16-times the desired baudrate or 
1.8432MHz for 115.2kbit/s.



5. Power supply and reset circuit

The described TNC is intended to be operated from a 12V power 
supply with the negative grounded like most radio-amateur 
equipment. Of course, the digital circuits of the TNC require a 
+5V supply. If any program parameters are stored in the CMOS RAM, 
then the latter requires a battery-backed supply +CMOS. Finally, 
the TNC requires a reset circuit that operates reliably regardless 
of the power-up or power-down sequences.

The circuit diagram of the power supply and reset circuit is 
shown on Fig.9. A simple switching regulator is used to obtain +5V 
from the available +12V external supply. The switching regulator 
achieves an efficiency of about 80%, thus halving the power 
consumption and heat generation when compared to a conventional 
linear regulator. The +CMOS supply is backed by a 3.6V 60mAh NiCd 
battery. An additional protection of the CMOS RAM content is 
provided by the /RESET signal by disabling the RAM chip select.

The reset circuit senses the input voltage to the power 
supply. The /RESET sgnal is only released after the input voltage 
exceeds 9.5V. An additional delay is generated by the 
1.2kohmX470uF RC time constant. At power down, the 470uF capacitor 
is discharged immediately through the 1N4001 diode, so that the 
/RESET signal is applied before the switching regulator stops 
operating. Finally, the reset circuit includes a small hysteresis 
(47kohm resistor) to generate a clean /RESET signal on its output.



The TNC power supply is built on a single-sided printed-
circuit board with the dimensions of 75mmX45mm, as shown on 
Fig.10. The corresponding component location is shown on Fig.11. 
Several mounting pads are provided for different-style NiCd 
batteries.

The total current drain of the described TNC equipped with a 
scrambler/bit-synchronizer and RS232 interface amounts to about 
200mA at +5V or about 100mA at +12V with the described power 
supply. At these current levels, the BD138 switching transistor 
does not require a heatsink. On the other hand, the 100uH chokes 
must be able to handle these currents too: chokes of the size of 
1/2W resistors or even larger should be used in the power supply.



6. Megabit TNC software

The TNC software should allow a fast and reliable data 
transfer between the TNC and the host computer or another 
terminal. The software of the first TNCs was intended to be used 
with dumb ASCII terminals. The RS232 communication was therefore 
designed for direct typing on the keyboard and readout on the CRT 
screen. Of course, such a simple interface is not the best 
solution for computer file transfer or multi-connect operation.

WA8DED attempted to improve the communication between the TNC 
and the host computer with his HOSTMODE protocol. In the HOSTMODE 
protocol, the host computer continuously polls the TNC to get new 
information. This requires the RS232 interface being much faster 
than the radio interface, making the HOSTMODE protocol useless for 
faster radio links.

The WA8DED software was cloned elsewhere. Maybe the best-
known clones are those from NordLink. Unfortunately, no one 
removed some important bugs from the original WA8DED code that 
corrupt the data and crash the TNC software or the host computer. 
Even worse, the same bugs were also transferred to the software 
that emulates a HOSTMODE TNC on a PC computer (TFPCX, TFKISS etc). 
For this reason, the HOSTMODE protocol is now almost forgotten.

The only RS232 protocol used by most TNCs seems to be the 
KISS (Keep It Simple Stupid) protocol. The KISS protocol simply 
transfers the same, unprocessed AX.25 frames over the RS232 
interface. The AX.25 protocol is therefore handled by the host 
computer except for a few timing functions tightly connected to 
the radio modem, like receive/transmit changeover.

The KISS protocol transmits the data as 8-bit bytes on an 
asynchronous serial interface. The beginning and the end of AX.25 
frames are marked with FEND ($C0) characters. When a FEND 
character appears inside an AX.25 frame, it is replaced by the 
sequence FESC, TFEND ($DB, $DC). The special character FESC also 
requires a replacement if appearing inside an AX.25 frame. FESC is 
replaced by FESC, TFESC ($DB, $DD). By definition, the KISS 
protocol does not make any use of the RS232 control lines (CTS, 
RTS etc).

The KISS frames are equipped with an additional control byte 
in front of the AX.25 frame. The control byte allows the selection 
of up to 16 radio ports on a multi-port TNC (upper four bits) and 
setting a few parameters of each radio channel (lower four bits). 
An AX.25 frame is identified by the lower four bits set to zero, 
while a value different from zero sets some TNC parameters. An 
exception is represented by the control byte $FF that is usually 
used to switch the TNC (back) to another mode of operation.

Most KISS frames have the first (control) byte set to zero 
($00), since we only have single-channel TNCs and most KISS frames 
carry AX.25 frames. Setting the TNC parameters TX delay, TX tail, 
ppersistance and slottime and selecting simplex or duplex 
operation as well as quitting the KISS mode of operation with 
special control bytes proved to be a poor solution in practice. 
Any errors on the RS232 interface may program the TNC in some 
useless operating mode and crash the AX.25 link.



Although the RS232 link includes just a short length of cable 
between the TNC and the host computer, transmission data errors 
occur frequently on the RS232 interface. The main cause is the 
poor design of PC interrupts. A lower-priority interrupt may stop 
the interrupt-driven RS232 data transfer leading to loss of data. 
Serial ports with FIFO registers may save some data, but they are 
still unable to guarantee an error-free data transmission.

RS232 errors can be tolerated in TCPIP operation, since all 
TCPIP frames include their own, internal CRC checksum. Of course, 
RS232 errors corrupt the data in conventional AX.25 contacts. 
Special KISS protocols including a two-byte CRC at the end of the 
frame, just like in the HDLC AX.25 frames, have been developed to 
detect and automatically reject corrupted frames.

Of course, both the TNC software and the host-computer 
software should detect automatically what kind of KISS protocol is 
being used: the last two bytes in a frame may be a 16-bit CRC 
computed in different ways or simply two valid data bytes. SMACK 
(Stuttgarts Modifiziertes Amaturfunk-CRC-KISS) is a KISS protocol 
with two CRC bytes at the end of each frame. The SMACK frames are 
marked with a $80 control byte at the beginning of each frame, 
since there are no TNCs available with more than 8 radio ports.

SMACK is using the same CRC polynomial-division algorithm as 
conventional AX.25 HDLC frames, except that the polynomial 
generator is started from an all-zero condition. The latter is a 
poor choice and may not detect some types of errors on the RS232 
interface. The FlexNet group corrected this problem by developing 
their own CRC algorithm. KISS frames with a FlexNet-CRC are marked 
with a $20 control byte at the beginning of each frame, since 
multiport TNCs are no longer being used.

The requirements for the TNC software are exactly defined: 
the TNC should communicate in the conventional-KISS protocol 
without CRC as well as in both CRC versions, SMACK and FlexNet-
CRC. All three KISS protocols are being used by almost all 
available packet-radio software running on host computers. The 
critical timing and operational parameters of the TNC are best 
burned once forever in the TNC EPROM rather than being modified by 
RS232 errors in an uncontrolled way.

The megabit TNC has some additional requirements. Since the 
radio interface is an order of magnitude faster than the maximum 
RS232 speed, the TNC should check the callsigns of all frames and 
reject useless frames addressed to other stations. An even better 
solution is a small packet-network node to handle the retries on 
both the radio and RS232 sides.

The described TNC was first tested with simple KISS software 
including both CRC variants. Besides the currently-available 
KISS/SMACK/FlexNet software, many other software upgrades are 
planned for the described TNC, including a small packet-radio node 
similar to the SuperVozelj nodes. All software is available as 
documented 68k ASM source as well as compiled EPROM files on our 
packet-radio mailbox S50BOX.

The current KISS software supports a simple interface to 
adjust the important program parameters like filter callsign, TX 



delay, TX tail, ppersistance and KISS protocol (no-CRC, SMACK or 
FlexNet). These parameters are simply typed in the "unproto" mode 
and transmitted as UI (beacon) frames to the callsign "TNC". The 
TNC will answer with UI frames too, showing the current parameter 
settings. This simple protocol resulted very reliable and at the 
same time accessible at any time from any packet-radio terminal 
program.

The current software version copies the default parameters 
from the EPROM after every reset and does not make any use of the 
CMOS battery. However, future versions will probably use the 
nonvolatile CMOS RAM at least to store the program parameters and 
callsign.

There are also a few restrictions imposed by the hardware 
simplicity of the described megabit TNC. Three address registers 
A4, A5, A6 and two data registers D6 and D7 are used at all times 
by the high-speed interrupt routines, so they can not be used by 
other TNC software. The radio-port interrupts are designed for 
simplex operation only.



7. Megabit TNC applications

The described megabit TNC was initially intended to prove 
that a simple circuit can perform much better than complex and 
expensive hardware. In particular, complicated DMA circuits and 
other interfaces are probably not required for high-speed packet-
radio. The described megabit TNC probably shows the evolution of 
future packet-radio hardware: most problems will be solved with 
standard, inexpensive parts programmed for our purposes.

Practical experiments with the described TNC equipped with 
simple KISS software and FlexNet driver running on the host 
computer have shown an average data throughput of about 25kbit/s 
or 3kbyte/s in a real network with many other users active on the 
same channel at the same time. A small-node software in the TNC to 
handle separately the retries on the radio side as well as on the 
RS232 side could probably double this figure before reaching the 
115.2kbit/s RS232 bottleneck. Some improvement could also be 
obtained with a better driver than FlexNet, since the timing 
constants of the latter are programmed for 9600bit/s modems and 
can not be changed.



For the packet-radio user, a megabit TNC on the RS232 
interface is certainly a slower solution than a DMA card in the 
computer bus, mainly thanks to the 115.2kbit/s RS232 bottleneck. 
The megabit TNC is therefore an interesting solution only when a 
DMA card can not be used, like laptop computers, or due to 
conflicts with other hardware and/or software in the same 
computer. Of course, a megabit TNC equipped with an Ethernet, USB 
or even parallel printer-port interface could perform much better.

For the network developer or sysop, the megabit TNC may have 
advantages too. Most important, one single user can never get all 
of the capacity of a megabit channel thanks to his/her RS232 
bottleneck, thus blocking the access to other users. A megabit TNC 
also allows testing new protocols in the network without changing 
the actual user terminal software running on host computers.

A megabit TNC also represents an ideal interface to older 
node hardware, like the RMNC/FlexNet nodes used elsewhere in 
Europe. The efficient megabit PSK transceivers, although described 
in detail in several places: [2], [3], [4], [5], [6], [7], [8], 
are not widely used outside Slovenia and Italy, probably just 



because popular packet-radio node hardware can not operate at 
megabit speeds directly, without a megabit TNC interface.

Finally, the described megabit TNC equipped with CMOS parts 
can also work as a simple, very low-power digipeater already with 
the currently-available KISS software. The overall current 
consumption of the TNC is about 100mA at 12V. Adding about 200mA 
for the 23cm PSK transceiver, the whole digipeater can be powered 
with a 50W solar panel and a large "diesel" car battery.
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