
A simple TNC for megabit packet-radio links

Matjaž Vidmar, S53MV

1. Computer interfaces for packet-radio

Computers were essential parts of packet-radio equipment
right from its beginning more than two decades ago. Since at that
time computers were not easily available and were much less
capable than today, most amateurs started their activity on
packet-radio with an old ASCII terminal. The ASCII terminal
required an interface called TNC (Terminal Node Controller). The
TNC interface lead to a standardization of the protocol used and
to a worldwide acceptance of the AX.25 standard.

Today there are many different interfaces called TNC. The
most popular is the TNC2, originally developed by TAPR (Tucson
Area Packet Radio) and afterward cloned elsewhere. Lots of
software was written for the TNC2 too, ranging from simple
terminal interfaces to complex computer interfaces and even
network nodes.

As more powerful computers became available, some functions
of the TNC were no longer required. In fact, some early TNC
software, designed to work with dumb ASCII terminals, represented
a bottleneck for efficient computer file transfer or multi-connect
operation. Most functions of the TNC were therefore transferred to
the host computer using the simple KISS protocol, originally
developed for TCPIP operation only. Unfortunately, the KISS
protocol adds additional delays in any packet-radio connection.

Today most computers allow a direct steering of a radio modem
up to about 10kbit/s, making the TNC completely unnecessary. For
higher speeds, different interface cards were developed. These
cards are plugged directly into the ISA bus of IBM PC clones to
avoid the delays and other problems caused by external interfaces.

The development of new TNCs and related software almost
stopped. Although there is lots of software available for the
popular TNC2 or its clones, most of the software is of very poor
quality. For medium-speed operation at 38400 or 76800bps, even the
simple KISS software is unreliable. The popular TNC2 will not go
much beyond 76800bps, while more recent TNCs lack software
support.

The first megabit PSK transceivers [3], [5], [6] were
intended for packet-radio node interconnects [1]. Their price and
complexity was relatively unimportant compared to the reliability
requirements and radio-range performance. For megabit operation,
the packet-radio nodes had to be equipped with Direct-Memory
Access (DMA) controllers and efficient software. Besides our
Slovenian "SuperVozelj" nodes and the similar Italian "Itanet"
project, most packet-radio node hardware and software was unable
to operate at megabit speeds. In most parts of Europe, the FlexNet
network is effectively blocked by the inefficient 9600bps FSK
modems.

The Zero-IF technology made simple and efficient megabit PSK
radios very affordable even in the form of NO-TUNE projects [2],
[4], [7], [8], [9]. The next step was to develop a simple user
interface. Marko Kovačevič, S57MMK, modified and improved the
popular Canadian "PI" packet interface card [10]. The S57MMK card
includes a Z8530 SCC serial interface chip, plugs into an ISA slot
in a PC-computer bus and uses the PC DMA for fast data transfers.
Strictly technically speaking, a DMA interface card represents the
best technical solution for megabit packet-radio.

Unfortunately, an ISA card can not be plugged into any
computer bus. Some computers even do not have ISA slots, like
laptops. The operation of some computers is unreliable on its own
even without additional hardware. Poorly-written software and some
other peripheral devices may not tolerate a packet-radio interface
card on the same bus. An additional interface card, regardless of
how well it is designed and built, may cause problems with
incompatible hardware and software.

Since new computers are equipped with faster, incompatible
and difficult-to-use buses, it is increasingly more difficult to
design packet-radio interface cards that plug directly into the
computer bus. TNCs in different forms are therefore coming back,
using one of the standard ports available on any computer like
RS232, printer port, Ethernet connector or even USB. Since any
such interface adds additional delays, using a TNC is not the best
technical solution.

Unfortunately, a TNC has to be used in all cases when a plug-
in interface card on the computer bus can not be used. Therefore
suitable TNCs have to be developed. In this article I am going to
describe a very simple TNC that connects to the RS232 port on the
computer. The TNC allows the operation with the described
1.2Mbit/s PSK radios [2], [4], [7], [8], [9], but on most
computers the real bottleneck is the 115.2kbit/s RS232.

2. Megabit TNC design

Megabit serial interfaces usually require DMA hardware for
fast and efficient data transfers. DMA controllers are therefore
used in the "SuperVozelj" [1] and in other high-speed packet-radio
node projects. Besides adding complexity, a DMA controller also
requires a critical handshake with the CPU, since the CPU and the
DMA must be synchronized to access the same bus.

The development of high-speed serial interfaces is slowly
moving away from dedicated hardware like DMA controllers. For
example, the MC68360 communications processor includes four fast
serial ports with DMA data transfers that are internally built
with a single RISC processor. The actual protocol as well as data
transfer to or from the CPU bus is selected by simply changing the
software running on the RISC processor.

In the case of amateur packet-radio, most AX.25 frames are
relatively short. AX.25 therefore requires lots of processing for
moderate data transfers. The required CPU processing power usually
exceeds that of a DMA controller. A detailed analysis shows that a
DMA controller may be completely unnecessary even for megabit
AX.25 terminals.

A simple solution was therefore sought for a megabit TNC,
including the selection of easy-to-get components. A careful
analysis of the instruction set and required clock cycles of the
popular 68000 microprocessor family has shown that megabit
transfers from or to the well-known Z8530 serial-communications
controller can be handled by interrupts, provided that a few
registers are dedicated permanently to the interrupt-service
routines.

For the first experiments I modified an old "SuperVozelj" CPU
card with a MC68010 processor. The experiments have shown that for
simplex 1.2288Mbit/s operation with PSK radios [2], [4], [7], [8],
[9], a minimum clock speed of about 15MHz is required, in good
agreement with the estimates of the interrupt-routine clock
cycles. A completely new TNC CPU board was then designed around
up-to-date CMOS parts like the MC68HC000 CPU and Z85C30 SCC.

The wiring diagram of the CPU, memory and serial port is
shown on Fig.1. Just like the "SuperVozelj" node, the 16-bit CPU
in the TNC boots from a single, cheap and relatively slow 8-bit
27C256 EPROM. The 16-bit instructions are read from the 8-bit
EPROM in two steps, while the upper 8-bits of the instruction are
temporarily stored in the 74HC374 latch. The content of the EPROM
is copied to the 16-bit-wide RAM immediately after reset to allow
fast instruction fetching without any wait states.

The Z85C30 serial-communications controller is connected to
the lower 8 bits of the data bus. Simple and fast interrupt
routines are triggered by the two outputs: /REQA (radio channel to
INT3) and /REQB (RS232 interface to INT1). The latter are usually
used for DMA transfers. The /INT output of the Z83C30 is not used,
since the latter includes many different interrupt sources,
unnecessarily slowing down the interrupt-service routine or in the
worst case delaying an important high-speed data transfer because
of an unimportant status interrupt.

Since the /INT output of the Z85C30 is not used, the
interrupt vector for the MC68HC000 has to be provided externally.
The MC68HC000 is able to generate interrupt "autovectors" on its
own by asserting /VPA during an interrupt acknowledge, however
this may add up to 15 additional wait states for every interrupt!

The interrupt vector is therefore provided by the 74HC244 in
exactly the same way as the /VPA, but without additional wait
states.

The MC68HC000 microprocessor, different memory chips and
Z85C30 SCC require some bus interface logic as shown on Fig.2. To
avoid metastable problems, all clocks are derived from a single
crystal oscillator. The crystal oscillator supplies the MC68HC000
clock and wait-state generator directly. The same clock is divided
by 2 by the first half of the 74HC74 to obtain the Z85C30 PCLK.

The 74HC138 is used to decode the upper address lines. The
2N2369 transistor is used to protect the CMOS-RAM content while
the +5V power supply is turned off and during reset. Of course,
the CMOS RAM receives a continuous supply voltage +CMOS at all
times from a backup battery. The /RESET signal is first buffered
(1/4 74HC08) and is supplied to the microprocessor (pins /RESET
and /HALT) and Z85C30 (both /SCCWR and /SCCRD low at the same
time).

Unlike the more powerful members of the MC68k family, the
MC68HC000 does not have a vector-base register (VBR). The
exception-(interrupt)-vector table is therefore always located at
the beginning of its address space. The interface logic is
therefore used to switch the beginning of the address space from
EPROM to RAM. At reset, the EPROM exception-vector table is used.
During normal startup of the TNC, the EPROM table is replaced by
the RAM table. The RAM table can be modified as well as accessed
without wait states.

The changeover from EPROM to RAM is handled by the second
half of the 74HC74. This flip-flop is reset by the /RESET signal
to enable the EPROM access. The microprocessor then copies the
EPROM content into the RAM. After the RAM contains valid software,
the flip-flop is set by the microprocessor. The EPROM is removed
from the microprocessor's address space and can no longer be
accessed by the software. The EPROM can only be accessed again by
applying an external /RESET signal.

The switching EPROM/RAM is controlled by the signals ROM
and /ROM. The ROM signal also enables the wait-state generator
with the 74HC164 shift register. Besides slowing down the CPU, the
74HC164 also steers the upper 8 bits of the instruction into the
74HC374 latch and increments the lowest (A0) address of the EPROM.
After the access to the EPROM is disabled, the wait-state
generator is disabled too and the /AS signal is fed directly to
/DTACK through two gates of the 74HC02. The /DTACK signal is
generated in all cases, while /BERR input to the MC68HC000 is not
used.

The MC68HC000 bus control signals also need some decoding to
steer popular memory chips and peripheral devices: the R//W signal
has to be split into two independent /WR and /RD signals. 74HC10
and 74HC32 gates are used for this purpose. The signals /UWR,
/LWR, /UWR and /LRD control the access to the RAM, the signals
/SCCWR and /SCCRD steer the Z85C30 and the signal /ROMOE enables
the EPROM.

3. Practical TNC construction

In the practical construction I decided to build the TNC as a
series of modules that can be connected together as required. The
power supply, radio modem and RS232 interfaces are therefore built
as separate modules on their own printed-circuit boards. The TNC
printed-circuit board therefore only includes the CPU, memory and
serial port. In this way the same TNC board can also be used for
other purposes, for example with different modems or as a simple
two-channel packet-radio node.

The CPU, memory, serial port and bus interface logic are
located on a double-sided printed circuit board with the
dimensions of 120mmX120mm. Both sides of the printed-circuit board
are shown on Fig.3. The corresponding component location is shown
on Fig.4. The module only has two connectors. A four-pin connector
is used for the power supply: main +5V supply, battery-backed
+CMOS, /RESET signal and ground.

Both channels of the Z85C30 serial port are available on a
20-pin connector together with +5V, +CMOS and ground. Besides
serial data inputs and outputs, the control lines /DCD, /CTS, /RTS
and /DTR as well as both clocks RTXC and TRXC are available for
both channels. These allow to connect the serial port to different
modems and/or other interfaces.

The MC68HC000 microprocessor is usually available in a 68-pin
PLCC package and is generally used in GPS receivers, fast hard-
disk controllers and other applications where the the processing
power of a simple 8-bit micro-controller is not sufficient. Since
the soldering of a PLCC package is not a simple operation, the
printed-circuit board is designed for a standard PLCC socket that
spreads out the PLCC pins to a comfortable 2.54mm (0.1") grid.

The pins of the 68-pin PLCC socket are arranged in two rows
on each of the four sides of the square socket. The socket pinout
is therefore somewhat different from the bare PLCC package as
shown on Fig.5. The MC68HC000 microprocessor has two unused pins
labeled "NC" in the 68-pin PLCC version. The microprocessor should
be carefully pushed in the PLCC socket. On the other hand, a
special tool is required to extract the microprocessor from the
socket. Special tools can be avoided if the PLCC socket is further
inserted in a 68-pin PGA socket (large version 11X11) that is
finally soldered into the printed-circuit board.

While building the megabit TNC, it makes sense to install all
integrated circuits on good-quality sockets. The TNC will work
with 128kbyte RAM chips (628128) or with 32kbyte RAM chips
(62256). In the latter case, the 28-pin 32kbyte RAM chips should
be inserted in the bottom part of the 32-pin sockets so that pin 1
of the RAM corresponds to pin 3 of the socket. The TNC will also
work with 32kbyte, 64kbyte or 128kbyte "cache" RAM chips from old
"486" motherboards. Since these RAMs are packaged in narrower
packages, their pins should be spread out or a suitable adapter
should be built to fit in the wider standard RAM socket.

The relatively short bus connections allow high clock speeds
for the TNC CPU. Experiments have shown that the maximum clock
speed does not depend much on the CPU used, but rather on the RAM
access time. A 10MHz version of the MC68HC000 will work with 70ns
RAMs up to 33MHz, while a 16MHz version of the MC68HC000 will
reach 40MHz with 20ns "cache" RAMs. The CMOS version of the SCC
chip Z85C30 also allows much higher clock frequencies than
specified: a 8MHz version usually works perfectly at 15MHz PCLK
(CPU at 30MHz).

Since all tested combinations of CPUs and memories always
achieved a maximum clock frequency of at least 25MHz, a CPU clock
of at least 20MHz is recommended for the megabit TNC. The exact
clock frequency also depends on the useable division modulos
inside the Z85C30 to obtain standard data rates. If the 1.2288MHz
clock on the radio side comes from the scrambler module [2], [4],
[8], [9], then the Z85C30 dividers only supply the RS232 baudrate.

A RS232 baudrate of 115.2kbit/s can be obtained from a CPU
clock frequency of 14.7456MHz, 22.1184MHz or 29.4912MHz. Although
the TNC may work at 14.7MHz, this clock is too low for reliable
operation at 1.2288Mbit/s on the radio side. Therefore 22.1MHz or
29.4MHz are recommended. Of course, any clock frequency can be
used for the CPU if an external clock of 1.8432MHz is supplied to
RTXCB. While using the TNC for lower kilobit data rates on the
radio port, there is much more freedom in choosing the clock
frequency.

4. Radio and RS232 interfaces

The megabit TNC is designed to work with different modems.
The most common combination is a scrambler/ bit-synchronizer on
channel A and a RS232 interface on channel B od the serial-
communications controller Z85C30. The scrambler/bit-synchronizer
[2], [4], [8], [9] includes many modem functions like clock
recovery and descrambling for the received data and clock
generation and data scrambling for the transmitted data.

The scrambler is connected to the Z85C30 channel A with five
signal wires plus ground. The signals include: received data
(RXD), clock (connected to RTXC), carrier detect (/DCD), PTT
command (/RTS) and transmitted data (/TXD). In this case the input
/CTS, output /DTR and clock TRXC are not used on channel A. An
unused CMOS input should be connected to ground or to any other
signal.

Some other modems for lower kilobit rates may require
internal clock recovery inside the Z85C30. In this case, the modem
is connected with just four wires besides ground: received data
(RXD), carrier detect (/DCD), PTT command (/RTS) and transmitted
data (TXD). The TNC software programs the Z85C30 to supply the
regenerated clock from the internal DPLL on the TRXC output. An
external jumper is required to bring this clock to RTXC. Of
course, the correct divider modulo should be set by the software.

If more than one modem is installed in the TNC, then the
channel A inputs RXD, /DCD and RTXC have to be switched among the

different modems and/or other clock sources. All of the modems
should receive their supply voltage at all times so that it is not
necessary to switch the channel A outputs /RTS and TXD.

A TNC is usually connected to a host computer through a RS232
interface. Unfortunately, the latter represents a real bottleneck
for a megabit TNC, since the highest RS232 baudrate is 115.2kbit/s
on most computers. The RS232 interface also includes a polarity
inversion on all signals and a logic-level shift to higher
positive and negative voltages.

A very simple RS232 interface can be built with the
integrated circuit MAX232 as shown on Fig.6. The MAX232 includes
two RS232 transmitters, two RS232 receivers and two DC/DC
converters to obtain +10V and -10V from a single +5V supply.
Unfortunately, the MAX232 also includes low-pass filters on both
transmitters to limit radio interference. These lowpass filters
also limit the available data rate to about
150kbit/s.

The RS232 interface is built on a small, single-sided
printed-circuit board with the dimensions of 54mmX44mm, as shown
on Fig.7. The printed-circuit board is supported by an angled
female D52 connector so that additional mounting screws are not
required. The corresponding component location is shown on Fig.8.
The female D25 connector is wired to fit the male RS232 D25
connector on PC COM ports.

While using the RS232 interface on channel B of the Z85C30,

the /DCD input and /DTR output remain unused. An unused CMOS input
should be connected to ground or to any other signal. If the
internal clock source in the Z85C30 is used, then a jumper from
TRXC to RTXC is required. An external clock source can also be
connected to the RTXC input. In the latter case, the external
clock frequency should equal 16-times the desired baudrate or
1.8432MHz for 115.2kbit/s.

5. Power supply and reset circuit

The described TNC is intended to be operated from a 12V power
supply with the negative grounded like most radio-amateur
equipment. Of course, the digital circuits of the TNC require a
+5V supply. If any program parameters are stored in the CMOS RAM,
then the latter requires a battery-backed supply +CMOS. Finally,
the TNC requires a reset circuit that operates reliably regardless
of the power-up or power-down sequences.

The circuit diagram of the power supply and reset circuit is
shown on Fig.9. A simple switching regulator is used to obtain +5V
from the available +12V external supply. The switching regulator
achieves an efficiency of about 80%, thus halving the power
consumption and heat generation when compared to a conventional
linear regulator. The +CMOS supply is backed by a 3.6V 60mAh NiCd
battery. An additional protection of the CMOS RAM content is
provided by the /RESET signal by disabling the RAM chip select.

The reset circuit senses the input voltage to the power
supply. The /RESET sgnal is only released after the input voltage
exceeds 9.5V. An additional delay is generated by the
1.2kohmX470uF RC time constant. At power down, the 470uF capacitor
is discharged immediately through the 1N4001 diode, so that the
/RESET signal is applied before the switching regulator stops
operating. Finally, the reset circuit includes a small hysteresis
(47kohm resistor) to generate a clean /RESET signal on its output.

The TNC power supply is built on a single-sided printed-
circuit board with the dimensions of 75mmX45mm, as shown on
Fig.10. The corresponding component location is shown on Fig.11.
Several mounting pads are provided for different-style NiCd
batteries.

The total current drain of the described TNC equipped with a
scrambler/bit-synchronizer and RS232 interface amounts to about
200mA at +5V or about 100mA at +12V with the described power
supply. At these current levels, the BD138 switching transistor
does not require a heatsink. On the other hand, the 100uH chokes
must be able to handle these currents too: chokes of the size of
1/2W resistors or even larger should be used in the power supply.

6. Megabit TNC software

The TNC software should allow a fast and reliable data
transfer between the TNC and the host computer or another
terminal. The software of the first TNCs was intended to be used
with dumb ASCII terminals. The RS232 communication was therefore
designed for direct typing on the keyboard and readout on the CRT
screen. Of course, such a simple interface is not the best
solution for computer file transfer or multi-connect operation.

WA8DED attempted to improve the communication between the TNC
and the host computer with his HOSTMODE protocol. In the HOSTMODE
protocol, the host computer continuously polls the TNC to get new
information. This requires the RS232 interface being much faster
than the radio interface, making the HOSTMODE protocol useless for
faster radio links.

The WA8DED software was cloned elsewhere. Maybe the best-
known clones are those from NordLink. Unfortunately, no one
removed some important bugs from the original WA8DED code that
corrupt the data and crash the TNC software or the host computer.
Even worse, the same bugs were also transferred to the software
that emulates a HOSTMODE TNC on a PC computer (TFPCX, TFKISS etc).
For this reason, the HOSTMODE protocol is now almost forgotten.

The only RS232 protocol used by most TNCs seems to be the
KISS (Keep It Simple Stupid) protocol. The KISS protocol simply
transfers the same, unprocessed AX.25 frames over the RS232
interface. The AX.25 protocol is therefore handled by the host
computer except for a few timing functions tightly connected to
the radio modem, like receive/transmit changeover.

The KISS protocol transmits the data as 8-bit bytes on an
asynchronous serial interface. The beginning and the end of AX.25
frames are marked with FEND ($C0) characters. When a FEND
character appears inside an AX.25 frame, it is replaced by the
sequence FESC, TFEND ($DB, $DC). The special character FESC also
requires a replacement if appearing inside an AX.25 frame. FESC is
replaced by FESC, TFESC ($DB, $DD). By definition, the KISS
protocol does not make any use of the RS232 control lines (CTS,
RTS etc).

The KISS frames are equipped with an additional control byte
in front of the AX.25 frame. The control byte allows the selection
of up to 16 radio ports on a multi-port TNC (upper four bits) and
setting a few parameters of each radio channel (lower four bits).
An AX.25 frame is identified by the lower four bits set to zero,
while a value different from zero sets some TNC parameters. An
exception is represented by the control byte $FF that is usually
used to switch the TNC (back) to another mode of operation.

Most KISS frames have the first (control) byte set to zero
($00), since we only have single-channel TNCs and most KISS frames
carry AX.25 frames. Setting the TNC parameters TX delay, TX tail,
ppersistance and slottime and selecting simplex or duplex
operation as well as quitting the KISS mode of operation with
special control bytes proved to be a poor solution in practice.
Any errors on the RS232 interface may program the TNC in some
useless operating mode and crash the AX.25 link.

Although the RS232 link includes just a short length of cable
between the TNC and the host computer, transmission data errors
occur frequently on the RS232 interface. The main cause is the
poor design of PC interrupts. A lower-priority interrupt may stop
the interrupt-driven RS232 data transfer leading to loss of data.
Serial ports with FIFO registers may save some data, but they are
still unable to guarantee an error-free data transmission.

RS232 errors can be tolerated in TCPIP operation, since all
TCPIP frames include their own, internal CRC checksum. Of course,
RS232 errors corrupt the data in conventional AX.25 contacts.
Special KISS protocols including a two-byte CRC at the end of the
frame, just like in the HDLC AX.25 frames, have been developed to
detect and automatically reject corrupted frames.

Of course, both the TNC software and the host-computer
software should detect automatically what kind of KISS protocol is
being used: the last two bytes in a frame may be a 16-bit CRC
computed in different ways or simply two valid data bytes. SMACK
(Stuttgarts Modifiziertes Amaturfunk-CRC-KISS) is a KISS protocol
with two CRC bytes at the end of each frame. The SMACK frames are
marked with a $80 control byte at the beginning of each frame,
since there are no TNCs available with more than 8 radio ports.

SMACK is using the same CRC polynomial-division algorithm as
conventional AX.25 HDLC frames, except that the polynomial
generator is started from an all-zero condition. The latter is a
poor choice and may not detect some types of errors on the RS232
interface. The FlexNet group corrected this problem by developing
their own CRC algorithm. KISS frames with a FlexNet-CRC are marked
with a $20 control byte at the beginning of each frame, since
multiport TNCs are no longer being used.

The requirements for the TNC software are exactly defined:
the TNC should communicate in the conventional-KISS protocol
without CRC as well as in both CRC versions, SMACK and FlexNet-
CRC. All three KISS protocols are being used by almost all
available packet-radio software running on host computers. The
critical timing and operational parameters of the TNC are best
burned once forever in the TNC EPROM rather than being modified by
RS232 errors in an uncontrolled way.

The megabit TNC has some additional requirements. Since the
radio interface is an order of magnitude faster than the maximum
RS232 speed, the TNC should check the callsigns of all frames and
reject useless frames addressed to other stations. An even better
solution is a small packet-network node to handle the retries on
both the radio and RS232 sides.

The described TNC was first tested with simple KISS software
including both CRC variants. Besides the currently-available
KISS/SMACK/FlexNet software, many other software upgrades are
planned for the described TNC, including a small packet-radio node
similar to the SuperVozelj nodes. All software is available as
documented 68k ASM source as well as compiled EPROM files on our
packet-radio mailbox S50BOX.

The current KISS software supports a simple interface to
adjust the important program parameters like filter callsign, TX

delay, TX tail, ppersistance and KISS protocol (no-CRC, SMACK or
FlexNet). These parameters are simply typed in the "unproto" mode
and transmitted as UI (beacon) frames to the callsign "TNC". The
TNC will answer with UI frames too, showing the current parameter
settings. This simple protocol resulted very reliable and at the
same time accessible at any time from any packet-radio terminal
program.

The current software version copies the default parameters
from the EPROM after every reset and does not make any use of the
CMOS battery. However, future versions will probably use the
nonvolatile CMOS RAM at least to store the program parameters and
callsign.

There are also a few restrictions imposed by the hardware
simplicity of the described megabit TNC. Three address registers
A4, A5, A6 and two data registers D6 and D7 are used at all times
by the high-speed interrupt routines, so they can not be used by
other TNC software. The radio-port interrupts are designed for
simplex operation only.

7. Megabit TNC applications

The described megabit TNC was initially intended to prove
that a simple circuit can perform much better than complex and
expensive hardware. In particular, complicated DMA circuits and
other interfaces are probably not required for high-speed packet-
radio. The described megabit TNC probably shows the evolution of
future packet-radio hardware: most problems will be solved with
standard, inexpensive parts programmed for our purposes.

Practical experiments with the described TNC equipped with
simple KISS software and FlexNet driver running on the host
computer have shown an average data throughput of about 25kbit/s
or 3kbyte/s in a real network with many other users active on the
same channel at the same time. A small-node software in the TNC to
handle separately the retries on the radio side as well as on the
RS232 side could probably double this figure before reaching the
115.2kbit/s RS232 bottleneck. Some improvement could also be
obtained with a better driver than FlexNet, since the timing
constants of the latter are programmed for 9600bit/s modems and
can not be changed.

For the packet-radio user, a megabit TNC on the RS232
interface is certainly a slower solution than a DMA card in the
computer bus, mainly thanks to the 115.2kbit/s RS232 bottleneck.
The megabit TNC is therefore an interesting solution only when a
DMA card can not be used, like laptop computers, or due to
conflicts with other hardware and/or software in the same
computer. Of course, a megabit TNC equipped with an Ethernet, USB
or even parallel printer-port interface could perform much better.

For the network developer or sysop, the megabit TNC may have
advantages too. Most important, one single user can never get all
of the capacity of a megabit channel thanks to his/her RS232
bottleneck, thus blocking the access to other users. A megabit TNC
also allows testing new protocols in the network without changing
the actual user terminal software running on host computers.

A megabit TNC also represents an ideal interface to older
node hardware, like the RMNC/FlexNet nodes used elsewhere in
Europe. The efficient megabit PSK transceivers, although described
in detail in several places: [2], [3], [4], [5], [6], [7], [8],
are not widely used outside Slovenia and Italy, probably just

because popular packet-radio node hardware can not operate at
megabit speeds directly, without a megabit TNC interface.

Finally, the described megabit TNC equipped with CMOS parts
can also work as a simple, very low-power digipeater already with
the currently-available KISS software. The overall current
consumption of the TNC is about 100mA at 12V. Adding about 200mA
for the 23cm PSK transceiver, the whole digipeater can be powered
with a 50W solar panel and a large "diesel" car battery.

References:

[1] Matjaž Vidmar: "1.2Mbit/s SuperVozelj packet-radio node
system", Scriptum der Vortraege, 40. Weinheimer UKW Tagung,
Weinheim, Germany, 16-17 September 1995, pages 240-252.

[2] Matjaž Vidmar: "23cm PSK Packet-radio TRX for 1.2Mbit/s user
access", Scriptum der Vortraege, 41. Weinheimer UKW Tagung,
Weinheim, Germany, 21-22 September 1996, pages 25.1-25.15.

[3] Matjaž Vidmar: "13cm PSK Transceiver for 1.2Mbit/s Packet
Radio", 15th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE,
Seattle, Washington, USA, September 20-22, 1996, pages 145-175.

[4] Matjaž Vidmar: "23cm PSK Packet-Radio RTX for 1.2Mbit/s User
Access", 15th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE,
Seattle, Washington, USA, September 20-22, 1996, pages 176-202.

[5] Matjaž Vidmar: "13cm PSK Transceiver for 1.2Mbits/s Packet
Radio, Part-1", VHF-Communications 3/1996, pages 130-147.

[6] Matjaž Vidmar: "13cm PSK Transceiver for 1.2Mbit/s Packet
Radio, Part-2 (conclusion)", VHF-Communications 4/1996, pages 194-
205.

[7] Matjaž Vidmar: "23-cm-Packet-Radio-Transceiver fuer 1.2-
Mbit/s-Benutzerzugriffe, Teil 1", AMSAT-DL Journal 3/1996, pages
42-44.

[8] Matjaž Vidmar: "Design des 23-cm-Null-ZF-PSK-Transceivers"
AMSAT-DL Journal 4/1996, pages 11-26.

[9] Matjaž Vidmar: "23cm PSK Packet Radio Transceiver for
1.2Mbit/s User access", VHF-Communications 2/1997, pages 74-96.

[10] Marko Kovačevič: "PC komunikacijska kartica za hitri packet-
radio", CQ ZRS 5/1997, pages 38-42.

* * * * *

